
ECE 329 Homework 10 � Solutions Due: Friday, October 31, 2025, 4:59 PM

1.

a) As the wave travels at the speed of light

µ = µo

and the impedance is given by

η = ηo

b) Wavelength can be calculated by

λ =
v

f
= 0.1m

Since the wave travels at the speed of light, the above wavelength represents the free space

wavelength. This wave lies in the radio wave region and is not visible. Consequently, the

wavevector is

β =
2π

λ
= 20π m−1

c) Since the electric �eld is right hand circular polarized, the form is di�erent from the last two

parts,
E = Eo[cos(ωt− βz)x̂+ sin(ωt− βz)ŷ]

= Eo[cos(6π × 109t− 20πz)x̂+ sin(6π × 109t− 20πz)ŷ] V
m

H = Eo
η [cos(ωt− βz)ŷ − sin(ωt− βz)x̂]

= Eo
120π [cos(6π × 109t− 20πz)ŷ − sin(6π × 109t− 20πz)x̂] A

m

d) The phasor forms of electric �eld and magnetic �eld

Ẽ = Eo exp(−jβz)(x̂− jŷ) = Eo exp(−j20πz)(x̂− jŷ) V
m

H̃ = Eo
η exp(−jβz)(ŷ + jx̂) = Eo

120π exp(−j20πz)(ŷ + jx̂) A
m

e) The complex poynting vector is given by

S̃ = Ẽ× H̃∗ =
2E2

o

η
ẑ =

E2
o

60π
ẑ

and the time average poynting vector by〈
S̃
〉
=

1

2
Re{Ẽ× H̃∗} =

E2
o

η
ẑ =

E2
o

120π
ẑ

2. .

a) Since σ
ωϵ =

4
2π×103×81×8.85×10−12 = 8.88× 105 ≫ 1, we use the approximations for good conduc-

tors, i.e. α = β =∼
√
πfµσ. Therefore, we �nd

α = β ≈
√

π × 103 × 4π × 10−7 × 4 = 0.126m−1.

Therefore the propagation constant is given by

γ = α+ jβ ≈ 0.126 (1 + j) m−1.
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The wavelength is

λ =
2π

β
= 49.87m,

whereas the penetration depth in the media with the intrinsic impedance

η =

√
ωµ

σ
ejπ/4 =

√
2π × 103 × 4π × 10−7

4

(
1√
2
+ j

1√
2

)
= 0.03 (1 + j) Ω,

is calculated as

δ =
1

α
= 7.94m.

b) Since σ
ωϵ = 4

2π×109×81×8.85×10−12 = 0.88, we will not be able to use the approximations listed in

the �rst table of Lecture 23. Then, The propagation constant is given by γ =
√

jωµ (σ + jωϵ)
which yields

γ =
√

(j2π × 109 × 4π × 10−7)(4 + j2π × 109 × 81× 8.85× 10−12)

= 77.46 + j203.87m−1.

Since α = 77.46m−1 and β = 203.87m−1, the penetration depth and the wavelength are

δ =
1

α
= 0.013m and λ =

2π

β
= 0.031m.

Finally, the intrinsic impedance is

η =

√
jωµ

σ + jωϵ

=

√
j2π × 109 × 4π × 10−7

4 + j2π × 109 × 81× 8.85× 10−12

= 33.84 + j12.86Ω

c) In the ocean, σ = 4 S/m, ϵr = 81, and µr = 1. For ω = 40π×103 rad/s, the propagation constant

is

γ =
√

jωµ(σ + jωϵ) =
√
j0.316× (4 + j1.8× 10−4) = 0.56 + j0.56m−1.

Since α = 0.56m−1, the distance at which a submarine should be located in order to receive at

least 0.1% of the amplitude of an EM signal transmitted from a ship located at the surface can

be calculated as follows

e−αz = 0.001 → z = − 1

α
ln(0.001) = 12.34m.

3.

a) For the wave described by E1 = 4 cos(ωt− βz)x̂ V

m
,

i. the corresponding phasors are given by

Ẽ1 = x̂4e−jβz V

m

H̃1 = ŷ
4

ηo
e−jβz A

m
.
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ii. It is linearly polarized in x̂-direction.

b) For the wave described by E2 = 5 cos(ωt− βy)x̂+ 5 sin(ωt− βy)ẑ V
m
,

i. the corresponding phasors are given by

Ẽ2 = x̂5e− ẑ5je−jβy = 5e−jβy (x̂− jẑ)
V

m

H̃2 =
5

ηo
e−jβy (−ẑ − jx̂)

A

m
.

ii. Given that the wave propagates along ŷ direction, it is seen that the wave is left-hand-

circularly polarized.

c) For the wave described by H3 = 2 cos(ωt+ βz + π
3 )x̂+ 2 sin(ωt+ βz − π

6 )ŷ
A

m
,

i. the corresponding phasors are given by

H̃3 = x̂2ejβzej
π
3 − ŷ2ejβzej(

π
2
−π

6
) = 2ej(βz+

π
3
) (x̂− ŷ)

A

m

Ẽ3 = 2ηoe
j(βz+π

3
) (ŷ + x̂)

V

m
.

ii. Thus the wave is linearly polarized in x̂+ŷ√
2
direction.

d) For the wave described by H4 = 4 cos(ωt− βx)ẑ − 3 sin(ωt− βx)ŷ A
m
,

i. the corresponding phasors are given by

H̃4 = ẑ4e−jβx + ŷ3je−jβx = e−jβx (4ẑ + 3jŷ)
A

m

Ẽ4 = ηoe
−jβx (4ŷ − 3jẑ)

V

m
.

ii. Since the two components have di�erent magnitudes, the wave is elliptical polarized.

e) For the wave described by H5 = 2 sin(ωt+ βy)x̂− 2 sin(ωt+ βy − π
4 )ẑ

A

m
,

i. the corresponding phasors are given by

H̃5 = −x̂2jejβy + ẑ2jejβy−j π
4 = 2jejβy

(
−x̂+ e−j π

4 ẑ
) A

m

Ẽ5 = 2ηoje
jβy

(
ẑ + e−j π

4 x̂
) V

m

ii. Since the phase angle between x̂ and ẑ components of Ẽ5 is
π
4 , not an integer multiple of π

2 ,

it is seen that the wave is elliptical polarized.
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4.

a) The phasors form of surface current densities are

J̃s1 = ẑJ1e
−jϕ A

m
(x = 0),

J̃s2 = ŷJ2
A

m
(x =

λ

4
).

Then, recalling β = 2π
λ , the corresponding electric �elds propagating in the region x > λ

4 are

given by

Ẽ1 = ẑ
ηo
2
J1e

j(−βx−ϕ+π) V

m
,

Ẽ2 = ŷ
ηo
2
J2e

j(−βx+ 3π
2
) V

m
.

The total �eld is Ẽ = Ẽ1 + Ẽ2 =
ηo
2 Je

j(−βx+π)(ŷej
π
2 + ẑe−jϕ) where J = J1 = J2.

i. The direction of propagation is +x̂ and the wave is RHC. Then, the ŷ component needs to

lead the ẑ component by 90o. Therefore

ϕ+
π

2
=

π

2
+ 2nπ → ϕ = 2nπ

where n is an arbitrary integer. The electric �eld phasor for the region will be Ẽ =
ηo
2 Je

j(−βx+π)(ŷej
π
2 + ẑej2nπ) Vm .

ii. To have LHC polarization, the ẑ component needs to lead by 90o the ŷ component. There-

fore

ϕ+
π

2
= −π

2
+ 2nπ → ϕ = 2nπ − π,

where n is an arbitrary integer. The electric �eld phasor for the region will be Ẽ =
ηo
2 Je

j(−βx+π)(ŷej
π
2 − ẑej2nπ) Vm .

iii. To have linear polarization, the ẑ component needs to be in phase with the ŷ component or

o� by 180o. Thus, we write

ϕ+
π

2
= nπ → ϕ = nπ − π

2

where n is an arbitrary integer. The electric �eld phasor for the region will be Ẽ =
ηo
2 Je

j(−βx+π)(ŷej
π
2 − ẑjejnπ) Vm .

b) The corresponding magnetic �eld is

H̃ =
1

2
Jej(−βx+π)(ẑej

π
2 − ŷe−jϕ)

A

m
,

where J = J1 = J2 = 1A/m. Therefore, the time-averaged Poynting vector is

⟨S⟩ =
1

2
Re

{
Ẽ× H̃∗

}
=

1

2

ηo
4
J2Re{2x̂}

=
ηo
4
x̂

© 2025 Victoria Shao. All rights reserved. Redistributing without permission is prohibited.



This result does not depend on the angle ϕ, therefore the time-averaged Poynting vector

⟨S⟩ = x̂ 30π
W

m2

c) If J2 =0, then Ẽ2 = 0, and H̃2 = 0. We are left with:

Ẽ1 = ẑ
ηo
2
J1e

j(−βx−ϕ+π) V

m

and

H̃1 = −ŷ
1

2
J1e

j(−βx−ϕ+π) V

m

therefore the time-averaged Poynting vector is

⟨S⟩ =
1

2
Re

{
Ẽ1 × H̃∗

1

}
=

1

2

ηo
4
J2
1 x̂

= x̂
ηo
8
J2 = x̂ 15π

W

m2
.

d) Note that the two currents in (b) generally produces circular polarized waves, while the single

current sheet in (c) produces linear polarized waves. From the results of (b) and (c), we can see

that in case of circularly polarized waves the power content is twice that of a linearly polarized

wave �eld of an equal instantaneous peak electric �eld magnitudes.
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5. When a wave is incident on a boundary between two di�erent media, a re�ected wave is produced.

In addition, if the second medium is not a perfect conductor, a transmitted wave is set up. Together,

these waves satisfy the boundary conditions at the interface of the two media. We shall assume that

a wave is incident from medium 1 (z < 0) onto the interface, thereby setting up a re�ected wave in

that medium, and a transmitted wave in medium 2 (z > 0).

a) The re�ection coe�cient for this boundary is de�ned from lecture:

Γ =
η2 − η1
η2 + η1

and the transmission coe�cient:

τ = 1 + Γ = 1 +
η2 − η1
η2 + η1

=
2η2

η2 + η1

b) Given an incident �eld of E(z, t) = ŷE0cos(ωt− β1z), this can be written in phasor form as:

Ẽi = ŷE0e
−jβ1z

The re�ected �eld is de�ned as

Ẽr = ŷΓ
∣∣∣Ẽi

∣∣∣ ejβ1z = ŷΓE0e
jβ1z

Similarly, the transmitted electric �eld is

Ẽt = ŷτ
∣∣∣Ẽi

∣∣∣ e−jβ2z = ŷτE0e
−jβ2z

The magnetic �eld's incident, re�ected and transmitted components will have their amplitudes

scaled by the characteristic impedance of each region and will be oriented to satisfy ẑ × Ẽi =
η1H̃i, ẑ × Ẽt = η2H̃t, and (−ẑ)× Ẽr = η1H̃r. Therefore, we can write

H̃i = −x̂
E0

η1
e−jβ1z

H̃r = x̂
ΓE0

η1
ejβ1z

and

H̃t = −x̂
τE0

η2
e−jβ2z

c) The complex Poynting vectors are given by

S̃i = Ẽi × H̃∗
i = (ŷ × (−x̂))

E2
0

η1
= ẑ

E2
0

η1

S̃r = Ẽr × H̃∗
r = (ŷ × x̂)

Γ2E2
0

η1
= −ẑ

Γ2E2
0

η1

and

S̃t = Ẽt × H̃∗
t = (ŷ × (−x̂))

τ2E2
0

η2
= ẑ

τ2E2
0

η2
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The time average Poynting vectors are therefore given by

⟨Si⟩ =
1

2
Re

[
S̃i

]
= ẑ

E2
0

2η1

⟨Sr⟩ =
1

2
Re

[
S̃r

]
= −ẑ

Γ2E2
0

2η1

and

⟨St⟩ =
1

2
Re

[
S̃t

]
= ẑ

τ2E2
0

2η2

d) The conservation of energy states that the power incident on the boundary must be equal to the

power leaving the boundary. Because we are considering uniform plane waves, the power density

(given by the Poynting vector) is constant over the x-y plane, so equivalently we can say that

the incident power density must equal the outgoing power density. This can be expressed as

|⟨Si⟩| = |⟨Sr⟩|+ |⟨St⟩|

To verify this for the given case, we can �rst calculate Γ and τ , noting that η1 = η0 (free space)
and η2 =

√
µ0/(2ϵ0) = η0/

√
2, as

Γ =
η2 − η1
η2 + η1

=
η0/

√
2− η0

η0/
√
2 + η0

=
1−

√
2

1 +
√
2
≈ −0.1715

Similarly

τ = 1 + Γ ≈ 0.8285

Next, we can insert these values to check that the conservation equation holds:

|⟨Si⟩| =
E2

0

2η1
≈ 0.00132E2

0

|⟨Sr⟩| =
Γ2E2

0

2η1
≈ 3.882× 10−5E2

0

and

|⟨St⟩| =
τ2E2

0

2η2
≈ 0.001287E2

0

These values can be inserted into the conservation equation to check that

|⟨Si⟩| =
E2

0

2η1
= 0.00132E2

0

and

|⟨Sr⟩|+ |⟨St⟩| = 3.882× 10−5E2
0 + 0.001287E2

0 = 0.00132E2
0 = |⟨Si⟩|

con�rming that conservation of energy is obeyed.
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e) We will prove that conservation of energy is obeyed for arbitrary values of η1 and η2, correspond-
ing to any lossless medium. First insert the de�nitions of the time-average power density of part

(c) into the conservation equation of part (d):

|⟨Si⟩| =
E2

0

2η1
=

Γ2E2
0

2η1
+

τ2E2
0

2η2
= |⟨Sr⟩|+ |⟨St⟩|

Next, we can divide both sides of the middle equation by the common factor of E2
0/2 to reveal

1

η1
=

Γ2

η1
+

τ2

η2

an equivalent condition that must hold to satisfy conservation of energy. To show that this

holds regardless of the impedances, we can substitute in the de�nitions of the re�ection and

transmission coe�cients from (a) as

1

η1
=

1

η1

(
η2 − η1
η2 + η1

)2

+
1

η2

(
2η2

η2 + η1

)2

Multiply both sides by η1η2 to gain common denominators on the right hand side:

η2 =
η2 (η2 − η1)

2 + 4η1η2

(η2 + η1)
2 = η2

η22 + 2η2η1 + η21
η22 + 2η2η1 + η21

= η2

implying that the conservation of energy equation holds regardless of the values of η1, η2.
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