ECE 313: Exam II

Wednesday, July 11, 2018 10 - 10.50 a.m. 1013 ECEB

Name: (in BLOCK CAPITALS)	lutions
NetID:	
Signature:	
Instructions	
This exam is closed book and closed notes except that both sides may be used. Calculators, laptop computers headphones, etc. are not allowed.	
The exam consists of 4 problems worth a total of 100 poins of it is best for you to pace yourself accordingly. Write reduce common fractions to lowest terms, but DO NO example, write $\frac{3}{4}$ instead of $\frac{24}{32}$ or 0.75).	your answers in the spaces provided, and
SHOW YOUR WORK; BOX YOUR ANSWERS. Answers w very little credit. If you need extra space, use the blank	ithout appropriate justification will receive page at the end of the exam.
	Grading
	1. 27 points
	2. 23 points
	3. 20 points
	4. 30 points
	Total (100 points)

- 1. [27 points] Suppose that you have three biased coins and a fair die. Coin C_1 has $P\{heads\} = 1/3$, while coins C_2 and C_3 have $P\{heads\} = 1/4$. Flip coin C_1 10 times and let X_1 be the total number of heads that show. Flip coin C_2 5 times and let X_2 be the total number of heads that show. Let $Y = X_1 + X_2$.
 - (a) Determine $E[X_1]$ and E[Y]. $X_1 \sim B_1 n_0 m_1 o_1 \left(10_1 \frac{1}{3}\right) \rightarrow E[X_1] = 10 \left(\frac{1}{3}\right) = \frac{10}{3}$ $X_2 \sim B_1 n_0 m_1 o_1 \left(5_1 \frac{1}{4}\right) \rightarrow E[X_2] = f\left(\frac{1}{4}\right) = \frac{1}{4}$ $E[Y] = E[Y_1 + Y_2] = E[X_1] + E[X_2] = \frac{10}{3} + \frac{1}{4} = \frac{15}{12}$ $f_Y = f_Y n_0 e_1 f_Y n_0$ of expectation

(b) Obtain
$$P\{X_1 = 1\}$$
 and $P\{Y = 1\}$.

$$X_1 \sim B_{1,0} \sim 10 \mid (10, \frac{1}{3}) \rightarrow P_{X_1} \left(1 - \frac{10}{3}\right) \mid (1 - \frac{1}{3})^{10-1} = \boxed{10 \cdot 2}$$

Using total probability

$$P = 1 = \sum_{k=0}^{\infty} P_{x}^{2} y = 1 | x_{1} = k$$

$$P = 1 | x_{1} = k$$

$$= P | x_{1} = 1 | x_{1} = 0 | x_{1} = 1 | x_{1} = 0 | x_{1} = 1 | x_{1} = 1$$

(c) Roll the die and let N be the number showing. Then flip coin C_3 N times. Let Z be the number of heads showing. Find E[Z]

the number of heads showing. Find
$$E[Z]$$
.

Using total probability

$$E[Z] = Z E[Z|N=A]P[N=4] = L Z E[W_K]$$

$$A=1$$

$$= \frac{1}{6} \frac{6}{4} \frac{k}{4} = \frac{1}{24} \frac{6(4)}{2} = \frac{7}{8}$$

- 2. [23 points] Suppose a fair die is rolled. Let X be the number of times the die is rolled until an even number shows. Let N be that first even number that shows, and let Y be the number of additional times the die is rolled until N shows again.
 - (a) Determine the pmf of X, and its mean μ_X .

$$X \sim Geometric(\frac{1}{2})$$
 $P_X(k) = J(\frac{1}{2})^{h-1}(\frac{1}{2}) = (\frac{1}{2})^{h} \quad h \in J', 2, ...$
 O
 e lie

 $M_X = \frac{1}{2} = [2]$

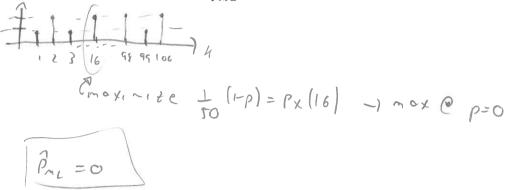
(b) Determine the pmf of Y, and its mean μ_Y .

(c) Determine E[X - Y].

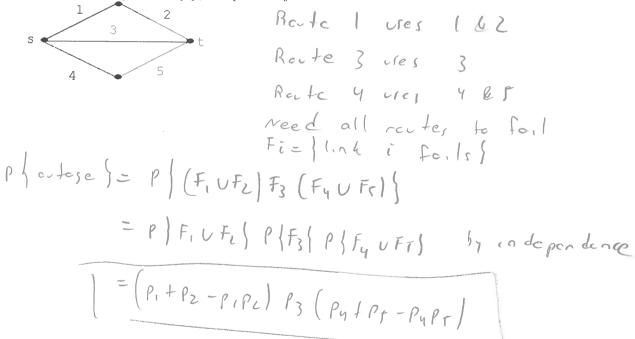
- 3. [20 points] The two parts of this problem are unrelated.
 - (a) Le X be a random variable with pmf

$$p_X(k) = \begin{cases} \frac{1}{50}p & k \in \{1, 3, 5, \dots, 100\} \\ \frac{1}{50}(1-p) & k \in \{2, 4, 6, \dots, 100\}, \end{cases}$$

where p is unknown. The experiment is performed once and it is observed that X = 16. Determine the maximum likelihood estimate \hat{p}_{ML} .



(b) Determine the probability of network outage in the s-t network below, assuming that link i fails with probability p_i independently of other links.



4. [30 points] Consider a binary hypothesis testing problem with the following likelihood ma-

UL.						
		X = 1	X = 2	X=3	X=4	X = 5
1	H_0	$\frac{1}{12}$	$\left(\frac{2}{12}\right)$	$\left(\frac{4}{12}\right)$	x	$\left(\frac{5}{12}\right)$
1	I_1	$\left(\frac{2}{12}\right)$	$\frac{1}{12}$	\widetilde{y}	$\left(\frac{3}{12}\right)$	$\frac{4}{12}$

(a) Determine the values of x and y.

Need rows to add up to 1

=1)
$$x = 1 - (\frac{1}{12} + \frac{2}{12} + \frac{4}{12} + \frac{4}{12}) = 0 = x$$
 $y = 1 - (\frac{2}{12} + \frac{4}{12} + \frac{4}{12}) = \frac{2}{12} = \frac{1}{12} = \frac{1}{12}$

(b) Determine the ML rule.

$$P_0 = \{z,3,r\}$$

$$P_1 = \{1,4\}$$

(c) Obtain a decision rule such that $p_{miss} = \frac{1}{12}$.

(d) If the MAP rule is used, for which value(s) of prior π_1 would H_1 always be declared?

$$\Delta(h) \geq \frac{\pi_0}{\pi_1} = \frac{1-\pi_1}{\pi_1}$$

$$\frac{\pi_0}{\pi_1} \geq \frac{1-\pi_1}{\pi_1}$$