University of Illinois

ECE 313: Exam I

1. (a) Let *L* denote the restaurant quality level. Then $\mathbb{P}[L = \ell] = \frac{1}{5}$ for $\ell = 1, ..., 5$. Let Y_{ℓ} denote the Poisson distribution with mean 10ℓ for $\ell = 1, ..., 5$. Let *X* denote the number of people dining in the restaurant. According to the total probability formula,

$$\mathbb{P}[X=40] = \sum_{\ell=1}^{5} \mathbb{P}[X=40|L=\ell] \mathbb{P}[L=\ell] = \frac{1}{5} \sum_{\ell=1}^{5} \mathbb{P}[Y_{\ell}=40] = \frac{1}{5} \sum_{\ell=1}^{5} \frac{(10\ell)^{40}}{40!} e^{-10\ell}.$$

(b) By the Bayes formula,

$$\mathbb{P}[L \ge 3|X = 40] = \frac{\sum_{\ell=3}^{5} \mathbb{P}[X = 40|L = \ell] \mathbb{P}[L = \ell]}{\mathbb{P}[X = 40]} = \frac{\sum_{\ell=3}^{5} \frac{(10\ell)^{40}}{40!} e^{-10\ell}}{\sum_{\ell=1}^{5} \frac{(10\ell)^{40}}{40!} e^{-10\ell}}.$$

- 2. (a) Define the likelihood ratio $\Lambda(k) = \frac{\mathbb{P}[X=k|H_1]}{\mathbb{P}[X=k|H_0]}$. Then $\Lambda(0) = \frac{1-q}{1-p} = \frac{2}{3}$ and $\Lambda(1) = \frac{q}{p} = \frac{3}{2}$. Hence, the ML decides H_0 when X = 0 and decides H_1 when X = 1.
 - (b) By definition,

$$p_{\text{false alarm}} = \mathbb{P}[\text{ML says } H_1|H_0] = \mathbb{P}[X = 1|H_0] = p = 0.4$$

 $p_{\text{miss}} = \mathbb{P}[\text{ML says } H_0|H_1] = \mathbb{P}[X = 0|H_0] = 1 - q = 0.4$

- (c) The MAP decides H_0 if $\Lambda(k) < \frac{P(H_0)}{P(H_1)}$ and decides H_1 if $\Lambda(k) > \frac{P(H_0)}{P(H_1)}$. In this problem, $\frac{P(H_0)}{P(H_1)} = \frac{1}{3}$ and therefore the MAP always say H_1 no matter what values the observation of X takes.
- (d) By definition

$$p_e = P(H_0)p_{\text{false alarm}} + P(H_1)p_{\text{miss}} = \frac{1}{4} \times 1 + \frac{3}{4} \times 0 = \frac{1}{4}$$

- (e) Note that $p_{\text{false alarm}}$ for the MAP rule is zero means that the MAP always say H_0 , which implies that $\frac{P(H_0)}{P(H_1)} > \frac{3}{2}$ (here is the inequality is strict, because we assume the tie is broken in favor of H_1), and thus $0.6 < P(H_0) \le 1$.
- 3. (a) The solution is $\frac{d}{m}$. We made an error only if F(x) is not identical to G(x) and n is a root of F(x) G(x). Since there are at most d roots of F(x) G(x) and n is uniformly chosen from $\{1, 2, \ldots, m\}$, the probability that we made an error is at most $\frac{d}{m}$.
 - (b) The solution is $\left(\frac{d}{m}\right)^r$. We made an error if F(x) is not identical to G(x) and all n_1, \ldots, n_r are roots of F(x) G(x). By part (a), the probability that n_i is the root of F(x) G(x) is at most $\frac{d}{m}$ for $i = 1, \ldots, r$. Since n_1, \ldots, n_r are independently chosen, the probability that all n_1, \ldots, n_r are roots of F(x) G(x) is at most $\left(\frac{d}{m}\right)^r$.

- 4. (a) $X \sim \text{Binomial}(n, \frac{1}{m})$; the limiting distribution of X is $\text{Pois}(\alpha)$ whose probability mass function is $p(k) = \frac{\alpha^k}{k!} \exp(-\alpha)$.
 - (b) Since $X \sim \text{Bin}(n, \frac{1}{m})$, so $\mathbb{P}(X = 0) = (1 \frac{1}{m})^n$. Define Bernoulli random variable Y_i such that $Y_i = 1$ if bin *i* is empty and $Y_i = 0$ if bin *i* is not empty. Then $\mathbb{P}[Y_i = 1] = \mathbb{P}[X = 0] = (1 \frac{1}{m})^n$. Since the fraction of empty bins is given by $\frac{1}{m} \sum_{i=1}^m Y_i$, by the linearity of the expectation, we get the the fraction of empty bins on average is $\frac{1}{m} \sum_{i=1}^m \mathbb{E}[Y_i] = (1 \frac{1}{m})^n$.

In the limit as $m \to \infty$, $X \sim \text{Pois}(\alpha)$ and thus $\mathbb{P}(X = 0) = \exp(-\alpha)$. Then the fraction of empty bins on average is $\exp(-\alpha)$.

- (c) First consider all the possible assignments of balls into bins. For the *i*-th ball, it could land in any one of *m* bins and thus there are *m* possible assignments for it. In total, there are m^n possible assignments of *n* balls into *m* bins. Next consider all the possible assignments of balls into bins such that all bins contain exactly α balls. For the first bin, since it contains α balls, there are $\binom{n}{\alpha}$ different choices of balls into the first bin. Then consider the second bin, since it contains α balls into the second bin. Continue this argument for all the bins, and in total there are $\binom{n}{\alpha}\binom{n-\alpha}{\alpha}\cdots\binom{\alpha}{\alpha}=\frac{n!}{(\alpha!)^m}$ possible assignments of balls into bins such that all bins contain exactly α balls. In conclude, the probability that all bins contain exactly α balls is $\frac{n!}{(\alpha!)^mm^n}$.
- (d) The probability of seeing at least one ball from every bin after m rounds is $\frac{\alpha^m m!}{n^m} = \frac{m!}{m^m}$. For each round, there are n different choices of balls, so in m rounds there are n^m different choices of balls. To see at least one ball from every bin after m rounds, we need exactly 1 ball from every bin. Since each bin contains exactly α balls, there are α^m different choices of m balls. Furthermore, the order of seeing these m balls could be arbitrarily and there are m! different orders of these m balls. Another way to derive is as follows. To see at least one ball from every bin after m

Another way to derive is as follows. To see at least one ball from every bin after m rounds means that each round we pick a ball from a bin that is different from what we've picked, so the answer is given by $\frac{m}{m} \frac{m-1}{m} \frac{m-2}{m} \cdots \frac{1}{m} = \frac{m!}{m^m}$.

- (e) Let T_i denote the number of additional rounds to see at least one ball from *i* bins, given that we have seen at least one ball from i-1 bins. Then T_i is distributed as geometric distribution with parameter $\frac{m-(i-1)}{m}$. Therefore, $\mathbb{E}[\sum_{i=1}^m T_i] = \sum_{i=1}^m \frac{m}{m-(i-1)} = m \sum_{i=1}^m \frac{1}{i}$.
- 5. (a) Each needle is lying in the circle with probability $\frac{\pi}{4}$ and thus $X \sim \text{Bin}(n, \frac{\pi}{4})$. Hence, $\mathbb{P}[X=k] = \binom{n}{k} \left(\frac{\pi}{4}\right)^k \left(1-\frac{\pi}{4}\right)^{n-k}$ for $1 \le k \le n$.
 - (b) Let $\hat{\pi}$ denote the maximum likelihood estimator of π . Then $\hat{\pi} = \arg \max_x {\binom{n}{k}} \left(\frac{x}{4}\right)^k \left(1 \frac{x}{4}\right)^{n-k}$. Hence, $\hat{\pi} = \frac{4k}{2}$.
 - (c) Note that the mean of X is $n\frac{\pi}{4}$. To estimate π within 0.1 means to estimate $\frac{\pi}{4}$ with 0.025. Using Chebychev inequality, we have

$$\mathbb{P}\left\{\frac{\pi}{4} \in \left[\frac{X}{n} - \frac{a}{2\sqrt{n}}, \frac{X}{n} + \frac{a}{2\sqrt{n}}\right]\right\} \ge 1 - \frac{1}{a^2}.$$

Pick a = 5 such that $1 - \frac{1}{a^2} = 96\%$, and we need $\frac{a}{2\sqrt{n}} = 0.025$. Solving for n, we get $n = 10^4$.