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1. (a) Let L denote the restaurant quality level. Then P[L = `] = 1
5 for ` = 1, . . . , 5. Let

Y` denote the Poisson distribution with mean 10` for ` = 1, . . . , 5. Let X denote the
number of people dining in the restaurant. According to the total probability formula,

P[X = 40] =
5∑
`=1

P[X = 40|L = `]P[L = `] =
1

5

5∑
`=1

P[Y` = 40] =
1

5

5∑
`=1

(10`)40

40!
e−10`.

(b) By the Bayes formula,

P[L ≥ 3|X = 40] =

∑5
`=3 P[X = 40|L = `]P[L = `]

P[X = 40]
=

∑5
`=3

(10`)40

40! e−10`∑5
`=1

(10`)40

40! e−10`
.

2. (a) Define the likelihood ratio Λ(k) = P[X=k|H1]
P[X=k|H0]

. Then Λ(0) = 1−q
1−p = 2

3 and Λ(1) = q
p = 3

2 .

Hence, the ML decides H0 when X = 0 and decides H1 when X = 1.

(b) By definition,

pfalse alarm = P[ML says H1|H0] = P[X = 1|H0] = p = 0.4

pmiss = P[ML says H0|H1] = P[X = 0|H0] = 1− q = 0.4.

(c) The MAP decides H0 if Λ(k) < P (H0)
P (H1)

and decides H1 if Λ(k) > P (H0)
P (H1)

. In this problem,
P (H0)
P (H1)

= 1
3 and therefore the MAP always say H1 no matter what values the observation

of X takes.

(d) By definition

pe = P (H0)pfalse alarm + P (H1)pmiss =
1

4
× 1 +

3

4
× 0 =

1

4
.

(e) Note that pfalse alarm for the MAP rule is zero means that the MAP always say H0,

which implies that P (H0)
P (H1)

> 3
2 (here is the inequality is strict, because we assume the tie

is broken in favor of H1), and thus 0.6 < P (H0) ≤ 1.

3. (a) The solution is d
m . We made an error only if F (x) is not identical to G(x) and n is a

root of F (x)−G(x). Since there are at most d roots of F (x)−G(x) and n is uniformly
chosen from {1, 2, . . . ,m}, the probability that we made an error is at most d

m .

(b) The solution is
(
d
m

)r
. We made an error if F (x) is not identical to G(x) and all n1, . . . , nr

are roots of F (x)−G(x). By part (a), the probability that ni is the root of F (x)−G(x)
is at most d

m for i = 1, . . . , r. Since n1, . . . , nr are independently chosen, the probability

that all n1, . . . , nr are roots of F (x)−G(x) is at most
(
d
m

)r
.



4. (a) X ∼ Binomial(n, 1
m); the limiting distribution of X is Pois(α) whose probability mass

function is p(k) = αk

k! exp(−α).

(b) Since X ∼ Bin(n, 1
m), so P(X = 0) = (1 − 1

m)n. Define Bernoulli random variable Yi
such that Yi = 1 if bin i is empty and Yi = 0 if bin i is not empty. Then P[Yi =
1] = P[X = 0] = (1 − 1

m)n. Since the fraction of empty bins is given by 1
m

∑m
i=1 Yi,

by the linearity of the expectation, we get the the fraction of empty bins on average is
1
m

∑m
i=1 E[Yi] = (1− 1

m)n.

In the limit as m→∞, X ∼ Pois(α) and thus P(X = 0) = exp(−α). Then the fraction
of empty bins on average is exp(−α).

(c) First consider all the possible assignments of balls into bins. For the i-th ball, it could
land in any one of m bins and thus there are m possible assignments for it. In total,
there are mn possible assignments of n balls into m bins. Next consider all the possible
assignments of balls into bins such that all bins contain exactly α balls. For the first bin,
since it contains α balls, there are

(
n
α

)
different choices of balls into the first bin. Then

consider the second bin, since it contains α balls and there are n−α balls left unassigned,
there are

(
n−α
α

)
different choices of balls into the second bin. Continue this argument for

all the bins, and in total there are
(
n
α

)(
n−α
α

)
· · ·
(
α
α

)
= n!

(α!)m
possible assignments of balls

into bins such that all bins contain exactly α balls. In conclude, the probability that all
bins contain exactly α balls is n!

(α!)mmn .

(d) The probability of seeing at least one ball from every bin after m rounds is αmm!
nm = m!

mm .
For each round, there are n different choices of balls, so in m rounds there are nm

different choices of balls. To see at least one ball from every bin after m rounds, we
need exactly 1 ball from every bin. Since each bin contains exactly α balls, there are
αm different choices of m balls. Furthermore, the order of seeing these m balls could be
arbitrarily and there are m! different orders of these m balls.

Another way to derive is as follows. To see at least one ball from every bin after m
rounds means that each round we pick a ball from a bin that is different from what
we’ve picked, so the answer is given by m

m
m−1
m

m−2
m · · · 1m = m!

mm .

(e) Let Ti denote the number of additional rounds to see at least one ball from i bins, given
that we have seen at least one ball from i−1 bins. Then Ti is distributed as geometric dis-

tribution with parameter m−(i−1)
m . Therefore, E[

∑m
i=1 Ti] =

∑m
i=1

m
m−(i−1) = m

∑m
i=1

1
i .

5. (a) Each needle is lying in the circle with probability π
4 and thus X ∼ Bin(n, π4 ). Hence,

P[X = k] =
(
n
k

) (
π
4

)k (
1− π

4

)n−k
for 1 ≤ k ≤ n.

(b) Let π̂ denote the maximum likelihood estimator of π. Then π̂ = arg maxx
(
n
k

) (
x
4

)k (
1− x

4

)n−k
.

Hence, π̂ = 4k
n .

(c) Note that the mean of X is nπ4 . To estimate π within 0.1 means to estimate π
4 with

0.025. Using Chebychev inequality, we have

P
{
π

4
∈
[
X

n
− a

2
√
n
,
X

n
+

a

2
√
n

]}
≥ 1− 1

a2
.

Pick a = 5 such that 1 − 1
a2

= 96%, and we need a
2
√
n

= 0.025. Solving for n, we get

n = 104.

2


