
ECE 313: Midterm II

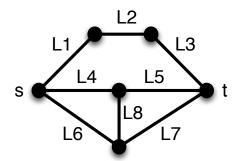
Name: (in BLOCK CAPITALS)	
Net ID:	
University ID Number:	
Signature:	
Instructions	
This exam is closed book and closed notes except that two 8.5"×11" page of notes is permitted: both sides of a sheet is allowed. Calculators, laptop computers, PDAs, iPods, cellphones, e-mail pagers, headphones, etc. are not allowed. Write your answers in the boxes provided, and reduce common fractions to lowest terms, but	
DO NOT convert them to decimal fractions (for example, write $\frac{3}{4}$ instead of $\frac{24}{32}$ or 0.75). It is OK for your final answers to include terms	1. 20 points
like $\binom{100}{20}$, $\binom{a}{10}$, $a^k - b^{k-1}$, 2^{50} , and so on. SHOW YOUR WORK. answers without ap-	2. 20 points
propriate justification will receive very little credit. If you need extra space, use the back of the previous page.	3. 20 points
or one providue page.	4. 20 points
	5. 20 points
	6. 25 points

Total (125 points) _____

1. [20 points] Suppose the pdf of a continuous random variable X is shown below

(a) [5 points] Find c

$$c =$$


(b) [5 points] Find E[X].

$$ANS =$$

PROBLEM 1, CONTINUED

10 points] Find the CDF of X and sketch it. Clearly values. Use full and empty circles to indicate the value of	
$F_X(t) =$	

2. [20 points] In the following network, all links L_i have capacity 1. Each link may fail independently of others with probability $p \in (0,1)$. The source is node s and the destination is node t. Let the capacity of the network be denoted by X.

(a) [3 points] Find all possible values of X.

$$ANS =$$

(b) [5 points] Find P(X = 3), express it as a function of p

$$ANS =$$

PROBLEM 2, CONTINUED

(c)	[12 points] Suppose $p = 1/2$, find $P(X = 0)$.
	ANS =

- 3. [20 points] A standard deck of 52 cards contains 4 aces. Suppose we shuffle all cards randomly so that all 52! permutations being equally likely. Let X be the number of aces in the toppest r cards $(1 \le r \le 52)$.
 - (a) [8 points] Find P(X = 3), as a function of r.

ANS =

(b) [12 points] Find the ML estimator of r if X = 1 is observed.

ANS =

- 4. [20 points] Alice has a unfair coin which gives Head w.p 0.9 and Tail w.p. 0.1. Alice randomly chooses one side of the coin, and flips the coin until she sees her chosen side. Let Y be the number of times Alice flips the coin. That is
 - H_1 : Alice chooses Head as her side, and flips the coin until Head first appears.
 - H_0 : Alice chooses Tail as her side, and flips the coin until Tail first appears.

And Y is the number of times Alice flips the coin.

(a) [6 points] Describe the ML decision rule, given that you observed Y = k for $k = 1, 2, 3, \dots$ Express it as directly in terms of k as possible.

ANS:		
ANS:		

(b) [6 points] Suppose Alice chooses Head w.p 3/4 and chooses Tail w.p 1/4, that is, $\pi_0 = 1/4, \pi_1 = 3/4$. Describe the MAP decision rule given that Y = k, k = 1, 2, 3..., express it as directly in terms of k as possible.

ANS:			

PROBLEM 4, CONTINUED

(c)	[8	$\mathbf{points}]$	Find	p_{false}	alarm	and	p_{miss}	for	the	MAP	rule	in	(b).

 $p_{false\ alarm} =$

 $p_{miss} =$

- 5. [20 points] The random variable X is defined as follows: A fair coin is tossed. If Head shows, we randomly and uniformly choose the value of X from the interval [0,1]; if Tail shows, X is an Exponential random variable with prameter 1. That is,
 - If Head shows, $X \sim Uniform[0, 1]$.
 - If Tail shows, $X \sim Exponential(1)$.
 - (a) [8 points] Find CDF of X, express it as a piecewise function of c

$$F_X(c) =$$

(b) [6 points] Find E[X]. Hint: You can use the law of total probability for expectation.

ANS =

PROBLEM 5, CONTINUED

(c) [6 points] Find Var(X).

ANS =		

6.	[25 points]	6 balls,	${\bf numbered}$	1	through	6,	are in	a	bag.	Suppose	we d	O 1	the	following
	two-step expe	eriment:												

- 1) randomly pick a ball from the bag and throw it away.
- 2) draw balls randomly from the bag one by one without replacement, let S_i be the sum of numbers on the first i balls.

For example, if the ball numbered 1 is thrown away and the rest balls are drawn as an order of (2,3,4,5,6), then $S_1=2,S_2=5,S_3=9,S_4=14,S_5=20$.

(a) [8 points] Find $P(S_2 = 6)$.

(b) [8 points] Find $E[S_4]$.

$$ANS =$$

(c)	[9	points]	Let $A = \{$	(the	number	of	the	ball	thrown	away	is 6}	. Find	P	$(A S_2$	= (<u></u> ვ).