ECE 313: Midterm I

Name: (m block capitals)		_
Net ID:		
University ID Number:		
Signature:		
Instructions		
This exam is closed book and closed notes ex-		
cept that one 8.5"×11" page of notes is permitted: only one side of a sheet is allowed.		
Calculators, laptop computers, PDAs, iPods,		
cellphones, e-mail pagers, headphones, etc.		
are not allowed.		
Write your answers in the boxes provided, and		
reduce common fractions to lowest terms, but DO NOT convert them to decimal fractions		
(for example, write $\frac{3}{4}$ instead of $\frac{24}{32}$ or 0.75). It		
is OK for your final answers to include terms	1. 30 points	
like $\binom{100}{20}$, $\binom{a}{10}$, $a^k - b^{k-1}$, 2^{50} , and so on.		_
SHOW YOUR WORK. answers without ap-	2. 18 points	
propriate justification will receive very little		_
credit. If you need extra space, use the back of the previous page.	3. 18 points	
or the previous page.		
	4. 16 points	

5. 18 points _____

Total (100 points) _____

-		ue or False? A statement is True if and only if it is always true. Each correct points, whereas an incorrect choice counts -1 point.
(a)) True □ For two eve	False \square ents A and B , $P(A \cup B) \leq P(A) + P(B)$.
(b) True □	False \square
	For any two	be events A and B which are independent, $P(A \cup B) = P(A) + P(B)$.
(c) True □	False \square
		C are independent events, then A is independent of $B \setminus C$. (For two sets S is defined is $S \cap T^c$)
(d) True □	False \square
	For any rar	ndom variables X and Y , we have $E\left[X+Y^2\right]=E\left[X\right]+\left(E\left[Y\right]\right)^2$.
(e) True □	False \square
	,	ng is a valid pmf for a random variable X .
		$p_X(i) = (e-1)e^{-i}$ for $i = 1, 2, \cdots$
(f) True □	False \square
	For any rar	adom variables X , we have $Var(2X+1) = 2Var(X) + 1$.
(g) True □	False \square
(0)		B be events with probabilities $P(A) = \frac{3}{4}$ and $P(B) = \frac{2}{3}$. It is possible to $P(B) = \frac{1}{3}$.
(h) True □	False \square
(11	,	B, and C , $A \setminus (B \cap C^c) = (A \setminus B) \cup (A \setminus C^c)$.
(i		False \Box
(1	Let X be a	a geometric random variable with parameter $0 . The pmf p_X(k) maximum at \lfloor 1/p \rfloor .$
(j		False \square
ν, ο	,	$0.3, P(B) = 0.7, P(B A) = 0.5$, then $P(A^cB^c) = 0.1$.

2.	[18 points]	A standard	deck of 52 car	ds contains	4 aces.	Suppose	we shuffle	all	cards
	randomly so	that all $52!$ pe	ermutations bei	ng equally li	ikely. Co	empute the	e following:		

(a) [6 points] The probability that all of the top 4 cards in the deck are aces.

ANS =

(b) [6 points] The probability that none of the top 4 cards in the deck are aces.

ANS =

PROBLEM 2, CONTINUED

[6 points] The conditional probability that "none of the top given that the suit of the top card is SPADE (\spadesuit) ".	o 4 cards in the deck are aces
ANS =	

- 3. [18 points] A fair die is rolled 5 times, let X be the largest die value. For example, if the outcome is (1, 2, 5, 4, 3) then X = 5:
 - (a) [5 points] Find $P(X \leq 3)$.

ANS =

(b) [7 points] Find P(X = 4).

ANS =

PROBLEM 3, CONTINUED

[6 points] Find the probability that exactly two die values other three die values are LESS THAN OR EQUAL TO 4	
ANS =	

4.	[16 points] ECE department has approximately 2000 students; 40% female and 60% male
	Among these 2000 students there are 300 international students, 20% of whom are female. A
	student is chosen at random from ECE.

(a)	[7 points]	What is the	${\rm conditional}$	probability	that	the	student	is male	given	that	the
	student is	NOT an inter	rnational stu	ident?							

ANS =	
-------	--

(b) [7 points] What is the conditional probability that the student is an international student given that the student is female?

$$ANS =$$

5.	[18 points]	A fair	die is	s rolled	until	the	numbers	2, 4	and	6 show	up	(not in	any	particula	ır
	order or in s	successi	ion). I	Let M	be the	e nu	mber of r	olls.							

(a) [5 points] Find P(M=3).

ANS =

(b) [5 points] Find E[M]

ANS =

PROBLEM 5, CONTINUED

(c) [8 points] Find P(M=4).

ANS =
