ECE 313: Exam II

Monday, April 8, 2024
7:00 p.m. - 8:15 p.m.

1. (a) Let X denote the number of defective light bulbs out of the 3 samples. Let H_{0} denote the hypothesis that the company's claim is true, and H_{1} denote the hypothesis that the quality assurance team's hypothesis is true. If H_{0} is true, $X \sim \operatorname{Bi}\left(3, \frac{1}{4}\right)$; otherwise, if H_{1} is true, $X \sim \operatorname{Bi}\left(3, \frac{1}{2}\right)$. The likelihood matrix is then:

	$X=0$	$X=1$	$X=2$	$X=3$
H_{0}	$27 / 64$	$27 / 64$	$9 / 64$	$1 / 64$
H_{1}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The ML decision rule is thus to declare H_{0} if $X=0,1$ and declare H_{1} if $X=2,3$.
(b) According to your definition of H_{0} and H_{1}, your $p_{\text {false alarm }}$ may equal the value of $p_{\text {miss }}$ in this solution, and vice versa. As long as your definitions are consistent, however, your p_{e} should be the same.

$$
\begin{align*}
& p_{\text {false alarm }}=P\left(\text { declare } H_{1} \mid H_{0}\right) \tag{1}\\
&=P\left(X=2,3 \mid H_{0}\right) \tag{2}\\
&=\frac{5}{32} \tag{3}\\
& p_{\text {miss }}= P\left(\text { declare } H_{0} \mid H_{1}\right) \tag{4}\\
&= P\left(X=0,1 \mid H_{1}\right) \tag{5}\\
&= \frac{1}{2} \tag{6}\\
& p_{e}=p_{\text {falsealarm }} \cdot \frac{1}{3}+p_{\text {miss }} \cdot \frac{2}{3} \tag{7}\\
&=\frac{5}{96}+\frac{1}{3} \tag{8}\\
&=\frac{37}{96} \tag{9}
\end{align*}
$$

(c) The MAP joint probability matrix is:

	$X=0$	$X=1$	$X=2$	$X=3$
H_{0}	$9 / 64$	$9 / 64$	$3 / 64$	$1 / 192$
H_{1}	$1 / 12$	$1 / 4$	$1 / 4$	$1 / 12$

Therefore H_{0} is chosen when $X=0$ and H_{1} is chosen $X=1,2,3$
(d) Remember that our false alarm and miss probabilities are conditional. Refer to the ML table for the respective values.

$$
\begin{align*}
& p_{\text {falsealarm }}=P\left(H_{1} \text { declared } \mid H_{0}\right) \tag{10}\\
&=P\left(X=1,2,3 \mid H_{0}\right) \tag{11}\\
&=\frac{37}{64} \tag{12}\\
& p_{\text {miss }}= P\left(H_{0} \text { declared } \mid H_{1}\right) \tag{13}\\
&=P\left(X=0 \mid H_{1}\right) \tag{14}\\
&=\frac{1}{8} \tag{15}\\
& p_{e}=p_{\text {miss }} \cdot \frac{2}{3}+p_{\text {falsealarm }} \cdot \frac{1}{3} \tag{16}\\
&=\frac{53}{192} \tag{17}
\end{align*}
$$

Note that $\frac{53}{192}<\frac{37}{96}$.
2. (a)

$$
\begin{aligned}
P\left(N_{5}-N_{3}=0\right) & =\frac{e^{-2 \lambda}(2 \lambda)^{0}}{0!} \\
& =e^{-10}
\end{aligned}
$$

Alternatively, you can let $T \sim \exp (\lambda)$ denote the time of first arrival after $t=3$, and thus

$$
\begin{aligned}
P\left(N_{5}-N_{3}=0\right) & =P(T>2) \\
& =1-P(T \leq 2) \\
& =e^{-2 \lambda}=e^{-10}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P\left(N_{2}-N_{1}=2 \cap N_{5}-N_{1}=5\right) \\
= & P\left(N_{2}-N_{1}=2 \cap N_{5}-N_{2}=3\right) \\
= & P\left(N_{2}-N_{1}=2\right) P\left(N_{5}-N_{2}=3\right) \\
= & \frac{e^{-\lambda} \lambda^{2}}{2!} \frac{e^{-3 \lambda}(3 \lambda)^{3}}{3!} \\
= & \frac{28125}{4} e^{-20}
\end{aligned}
$$

(c)

$$
\begin{aligned}
P\left(N_{5} \geq 3 \mid N_{3}=2\right) & =\frac{P\left(N_{5} \geq 3 \cap N_{3}=2\right)}{P\left(N_{3}=2\right)} \\
& =\frac{P\left(N_{5}-N_{3} \geq 1 \cap N_{3}=2\right)}{P\left(N_{3}=2\right)} \\
& =P\left(N_{5}-N_{3} \geq 1\right) \\
& =1-P\left(N_{5}-N_{3}=0\right) \\
& =1-e^{-10}
\end{aligned}
$$

Alternatively, you can let $T \sim \exp (\lambda)$ denote the time of first arrival after $t=3$, and thus

$$
\begin{aligned}
P\left(N_{5}-N_{3} \geq 1\right) & =P(T \geq 2) \\
& =1-e^{-10}
\end{aligned}
$$

3. (a) We have

$$
(\text { number of times a number other than } 6 \text { shows })=100-X .
$$

Therefore

$$
A=\{X \leq 180-X+4\}=\{X \leq 92\} .
$$

Since a 6 (success) occurs with probability $1 / 6$ on every die roll, $X \sim \operatorname{Binom}(180,1 / 6)$.
(b) Since $X \sim \operatorname{Binom}(180,1 / 6)$, therefore

$$
P(A)=P\{X \leq 92\}=\sum_{k=0}^{92}\binom{180}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{180-k}=\left(\frac{5}{6}\right)^{180} \sum_{k=0}^{92}\binom{180}{k} 5^{-k} .
$$

(c) Note that $E[X]=n p=30, \operatorname{Var}(X)=(180) p(1-p)=25$, and $\sigma=\sqrt{\operatorname{Var}(X)}=5$. Therefore

$$
\begin{aligned}
P(A) & =P\{X \leq 92\} \approx P\{\tilde{X} \leq 92.5\} \\
& =P\left\{\frac{\tilde{X}-30}{5} \leq \frac{92.5-30}{5}\right\} \\
& =\Phi\left(\frac{92.5-30}{5}\right)=\Phi(12.5) .
\end{aligned}
$$

where the approximation comes from Gaussian approximation with continuity correction.
(d) We have

$$
\begin{aligned}
P(B) & =P\{X=55\}=P\{54.5<X<55.5\} \approx P\{54.5<\tilde{X}<55.5\} \\
& =P\left\{\frac{54.5-30}{5}<\frac{\tilde{X}-30}{5}<\frac{55.5-30}{5}\right\} \\
& =Q\left(\frac{54.5-30}{5}\right)-Q\left(\frac{55.5-30}{5}\right)=Q(4.9)-Q(5.1) .
\end{aligned}
$$

4. (a) Note that X is continuous and a uniform random variable.

$$
\begin{aligned}
& P(1<X<2)=\frac{1}{3}(2-1)=\frac{1}{3} \\
& P\left(1 \leq X \leq \frac{3}{2}\right)=\frac{1}{3}\left(\frac{3}{2}-1\right)=\frac{1}{6}
\end{aligned}
$$

(b)

$$
P(X \leq 3 Y)=P\left(3 X^{2}-X \geq 0\right)=P(X(3 X-1) \geq 0)
$$

$X(3 X-1)$ is an upward parabola with roots $X=0, \frac{1}{3}$. Therefore, $X(3 X-1) \geq 0$ for $X \leq 0$ and $X \geq \frac{1}{3}$.

$$
\begin{aligned}
P(X \leq 3 Y) & =P\left(3 X^{2}-X \geq 0\right) \\
& =P(X(3 X-1) \geq 0) \\
& =P\left(X \leq 0 \cup X \geq \frac{1}{3}\right) \\
& =P(X \leq 0)+P\left(X \geq \frac{1}{3}\right) \\
& =\frac{1}{3}\left(3-\frac{1}{3}\right) \\
& =\frac{8}{9}
\end{aligned}
$$

