ECE 313: Exam II Conflict 2

1. (a) Let X denote the number of cans observed with sugar content higher than 35 grams out of the 3 samples. Let H_{0} denote the hypothesis that the company's claim is true, and H_{1} denote the hypothesis that the consumer advocacy group's hypothesis is true. If H_{0} is true, $X \sim \operatorname{Bi}\left(3, \frac{1}{3}\right)$; otherwise, if H_{1} is true, $X \sim \operatorname{Bi}\left(3, \frac{1}{2}\right)$. The likelihood matrix is then:

	$X=0$	$X=1$	$X=2$	$X=3$
H_{0}	$8 / 27$	$12 / 27$	$6 / 27$	$1 / 27$
H_{1}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The ML decision rule is thus to declare H_{0} if $X=0,1$ and declare H_{1} if $X=2,3$.
(b) According to your definition of H_{0} and H_{1}, your $p_{\text {false alarm }}$ may equal the value of $p_{\text {miss }}$ in this solution, and vice versa. As long as your definitions are consistent, however, your p_{e} should be the same.

$$
\begin{align*}
& p_{\text {false alarm }}=P\left(\text { declare } H_{1} \mid H_{0}\right) \tag{1}\\
&=P\left(X=2,3 \mid H_{0}\right) \tag{2}\\
&=\frac{7}{27} \tag{3}\\
& p_{\text {miss }}=P\left(\text { declare } H_{0} \mid H_{1}\right) \tag{4}\\
&=P\left(X=0,1 \mid H_{0}\right) \tag{5}\\
&=\frac{1}{2} \tag{6}\\
& p_{e}= p_{\text {false alarm }} \cdot \frac{1}{4}+p_{\text {miss }} \cdot \frac{3}{4} \tag{7}\\
&=\frac{7}{108}+\frac{3}{8} \tag{8}\\
&=\frac{95}{216} \tag{9}
\end{align*}
$$

(c) The MAP joint probability matrix is then:

	$X=0$	$X=1$	$X=2$	$X=3$
H_{0}	$8 / 108$	$12 / 108$	$6 / 108$	$1 / 108$
H_{1}	$3 / 32$	$9 / 32$	$9 / 32$	$3 / 32$

Therefore H_{1} is always chosen.
(d)

$$
\begin{align*}
p_{\text {false alarm }} & =P\left(\text { declare } H_{1} \mid H_{0}\right) \tag{10}\\
& =P\left(X=0,1,2,3 \mid H_{0}\right) \tag{11}\\
& =1 \tag{12}\\
p_{\text {miss }} & =P\left(\text { declare } H_{0} \mid H_{1}\right) \tag{13}\\
& =0 \tag{14}
\end{align*}
$$

$$
\begin{equation*}
p_{e}=p_{\text {false alarm }} \cdot \frac{1}{4}+p_{\text {miss }} \cdot \frac{3}{4} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{4} \tag{16}
\end{equation*}
$$

Note that $\frac{1}{4}<\frac{95}{216}$.
2. (a)

$$
\begin{aligned}
P\left(N_{60}=0\right) & =\frac{e^{-60 \lambda}(60 \lambda)^{0}}{0!} \\
& =e^{-60}
\end{aligned}
$$

(b) Due to the independent increment property,

$$
\begin{aligned}
P\left(N_{120}-N_{60}=1 \mid N_{60}=10\right) & =P\left(N_{120}-N_{60}=1\right) \\
& =\frac{e^{-60 \lambda}(60 \lambda)^{1}}{1!} \\
& =60 e^{-60}
\end{aligned}
$$

(c) Let A denote the event that the server encountered exactly 1 arrival in both of the two time intervals $[0,2]$ and $[1,4]$ seconds. There are two ways to meet such requirements:

	$[0,1)$	$[1,2]$	$(2,4]$
Case \#1	1	0	1
Case \#2	0	1	0

$$
\begin{aligned}
P(A) & =\frac{e^{-\lambda} \lambda^{1}}{1!} \frac{e^{-\lambda} \lambda^{0}}{0!} \frac{e^{-2 \lambda}(2 \lambda)^{1}}{1!}+\frac{e^{-\lambda} \lambda^{0}}{0!} \frac{e^{-\lambda} \lambda^{1}}{1!} \frac{e^{-2 \lambda}(2 \lambda)^{0}}{0!} \\
& =3 e^{-4}
\end{aligned}
$$

3. (a) We have

$$
(\text { number of times odd number shows })=100-X .
$$

Therefore

$$
A=\{X \leq 100-X+4\}=\{X \leq 52\} .
$$

Since an even number (success) occurs with probability $3 / 6$ on every die roll, $X \sim$ Binom (100, 0.5).
(b) Since X has the binomial distribution with parameters $n=100$ and $p=0.5$, therefore

$$
P(A)=P\{X \leq 52\}=\sum_{k=0}^{52}\binom{100}{k}(0.5)^{k}(0.5)^{100-k}=(0.5)^{100} \sum_{k=0}^{52}\binom{100}{k} .
$$

(c) Note that $E[X]=50, \operatorname{Var}(X)=(100) p(1-p)=25$, and $\sigma=\sqrt{\operatorname{Var}(X)}=5$. Therefore

$$
\begin{aligned}
P(A) & =P\{X \leq 52\} \approx P\{\tilde{X} \leq 52.5\} \\
& =P\left\{\frac{\tilde{X}-50}{5} \leq \frac{52.5-50}{5}\right\} \\
& =\Phi\left(\frac{52.5-50}{5}\right)=\Phi(0.5) .
\end{aligned}
$$

where the approximation comes from Gaussian approximation with continuity correction.
(d) We have

$$
\begin{aligned}
P(B) & =P\{X=55\}=P\{54.5<X<55.5\} \\
& \approx P\{54.5<\tilde{X}<55.5\} \\
& =P\left\{\frac{54.5-50}{5}<\frac{\tilde{X}-50}{5}<\frac{55.5-50}{5}\right\} \\
& =Q\left(\frac{54.5-50}{5}\right)-Q\left(\frac{55.5-50}{5}\right)=Q(0.9)-Q(1.1) .
\end{aligned}
$$

4. (a) A valid pdf should integrate to 1 . For $c>0,|c|=c$.

$$
\begin{aligned}
\int_{0}^{|c|}\left(c x+c^{2}\right) d x & =1 \\
\frac{c|c|^{2}}{2}+c^{2}|c| & =1 \\
\frac{3 c^{3}}{2} & =1 \\
c^{3} & =\frac{2}{3} \\
c & =\sqrt[3]{\frac{2}{3}}
\end{aligned}
$$

(b) Since $X \geq 0$,

$$
\begin{aligned}
P\left(\frac{c}{4}<X^{2}<\frac{c}{2}\right) & =P\left(\frac{\sqrt{c}}{2}<X<\frac{\sqrt{c}}{\sqrt{2}}\right) \\
& =\int_{\frac{\sqrt{c}}{2}}^{\frac{\sqrt{c}}{\sqrt{2}}}\left(c x+c^{2}\right) d x \\
& =\frac{c x^{2}}{2}+\left.c^{2} x\right|_{\frac{\sqrt{c}}{2}} ^{\frac{\sqrt{c}}{\sqrt{2}}} \\
& =\frac{c^{2}}{4}+\frac{c^{\frac{5}{2}}}{\sqrt{2}}-\frac{c^{2}}{8}-\frac{c^{\frac{5}{2}}}{2} \\
& =\frac{c^{2}}{8}+(\sqrt{2}-1) \frac{c^{\frac{5}{2}}}{2}
\end{aligned}
$$

