ECE 313: Exam I

Monday, February 26, 2024
7:00 p.m. - 8:15 p.m.

1. (a) If we use (H, H, T), for example, to denote the case of "first toss head, second toss head, and third toss tail", then the sample space can be expressed as

$$
\{(H, H, H),(H, H, T),(H, T, H),(H, T, T),(T, H, H),(T, H, T),(T, T, H),(T, T, T)\}
$$

and each element is equally likely to occur. We then have

$$
P\left(A_{12}\right)=P\left(A_{13}\right)=P\left(A_{23}\right)=\frac{4}{8}=\frac{1}{2}
$$

and

$$
\begin{aligned}
& P\left(A_{12} A_{13}\right)=P\left(A_{12} A_{23}\right)=P\left(A_{13} A_{23}\right) \\
= & P(\text { all } 3 \text { tosses produce same outcome })=\frac{2}{8}=\frac{1}{4}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P\left(A_{12} A_{13}\right)=P\left(A_{12}\right) P\left(A_{13}\right) \\
& P\left(A_{12} A_{23}\right)=P\left(A_{12}\right) P\left(A_{23}\right) \\
& P\left(A_{13} A_{23}\right)=P\left(A_{13}\right) P\left(A_{23}\right)
\end{aligned}
$$

and thus these events are pairwise independent.
(b) As we have found that they are pairwise independent in (a), it remains to check whether

$$
P\left(A_{12} A_{13} A_{23}\right)=P\left(A_{12}\right) P\left(A_{13}\right) P\left(A_{23}\right)
$$

However,

$$
\begin{aligned}
P\left(A_{12} A_{13} A_{23}\right) & =P(\text { all } 3 \text { tosses produce same outcome }) \\
& =\frac{1}{4} \\
& \neq \frac{1}{8}=P\left(A_{12}\right) P\left(A_{13}\right) P\left(A_{23}\right)
\end{aligned}
$$

so these events are not independent.
2. (a) Given that $p_{X}(m)=5 p_{X}(0)$, thus $c_{2}=5 c_{1}\left(\frac{1}{2}\right)^{0}$ or $c_{2}=5 c_{1}$ $p_{X}(k)$ is a pmf, thus we have:

$$
\begin{aligned}
\sum_{k} p_{X}(k) & =1 \\
c_{1}\left(\frac{1}{2}\right)^{-2}+c_{1}\left(\frac{1}{2}\right)^{-1}+c_{1}\left(\frac{1}{2}\right)^{0}+c_{2} & =1 \\
7 c_{1}+5 c_{2} & =1
\end{aligned}
$$

By solving the systems of equation:

$$
\left\{\begin{array}{r}
c_{2}=5 c_{1} \\
7 c_{1}+c_{2}=1
\end{array}\right.
$$

We get $c_{1}=\frac{1}{12}$ and $c_{2}=\frac{5}{12}$.
(b) Given that $c_{1}=\frac{1}{12}$ and $c_{2}=\frac{5}{12}$, we have:

$$
E[X]=\sum_{k} k p_{X}(k)=-2\left(\frac{1}{12}\right)\left(\frac{1}{2}\right)^{-2}+(-1)\left(\frac{1}{12}\right)\left(\frac{1}{2}\right)^{-1}+0+\frac{5 m}{12}=-\frac{10}{12}+\frac{5 m}{12}
$$

By setting $E[X]=0$, we get $m=2$.
(c) With $c_{1}=\frac{1}{12}, c_{2}=\frac{5}{12}, m=2$, and $\mathbb{E}[X]=0$, we have $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=$ $\mathbb{E}\left[X^{2}\right]=4\left(\frac{1}{12}\right)\left(\frac{1}{2}\right)^{-2}+1\left(\frac{1}{12}\right)\left(\frac{1}{2}\right)^{-1}+0+4 \cdot \frac{5}{12}=\frac{4}{3}+\frac{1}{6}+\frac{5}{3}=\frac{19}{6}$
(d) $\operatorname{Pr}\{|X| \geq 2\}=\operatorname{Pr}\{X \geq 2\}+\operatorname{Pr}\{X \leq-2\}=\operatorname{Pr}\{X=2\}+\operatorname{Pr}\{X=-2\}=\frac{5}{12}+\frac{1}{12} \cdot 4=\frac{3}{4}$ $\mathbb{E}[|X|]=2\left(\frac{1}{12}\right)\left(\frac{1}{2}\right)^{-2}+(1)\left(\frac{1}{12}\right)\left(\frac{1}{2}\right)^{-1}+0+\frac{10}{12}=\frac{8}{12}+\frac{2}{12}+\frac{10}{12}=\frac{5}{3}$
3. (a) The expected number of times you win the $\$ 5$ dollar prize can be modeled as the expected number of successes for a binomial distribution with parameters $n=52, p=10^{-2}$. Therefore this is equal to 0.52 , or $\frac{13}{25}$.
The probability that you win the main prize exactly once can be modeled as $P(X=1)$ for a binomial random variable X with parameters $n=52, p=10^{-6}$.

$$
P(X=1)=p_{X}(1)=\binom{52}{1}\left(10^{-6}\right)^{1}\left(1-10^{-6}\right)^{52-1}
$$

(b) This can be modeled as the expected number of trials before your first success, or the expected value of a geometric distribution with parameter $p=10^{-6}$. The expected value is therefore

$$
\frac{1}{10^{-6}}=10^{6}
$$

(c) Let p be the probability of winning the $\$ 5$ prize and $E[X]$ be the expected number of tickets before we win two $\$ 5$ awards consecutively. To calculate the expectation, we consider the various events that can occur and their corresponding probabilities. We use the independence of outcomes of any pair of tickets.

- The first ticket is a loss: This happens with a probability $(1-p)$. Since we did not win with this ticket and each round is independent, the expected number of additional tickets needed before we win two $\$ 5$ prizes consecutively is still $E[X]$. Counting the one extra ticket, the total expected number of tickets is $E[X]+1$.
- The first ticket is a win:
- The second ticket is a loss: A win followed by a loss happens with a probability $p(1-p)$. Since we did not win two $\$ 5$ prizes consecutively and each round is independent, the expected number of additional tickets before we win two $\$ 5$ prizes consecutively is still $E[X]$. Counting the two extra tickets, the total expected number of tickets is $E[X]+2$.
- The second ticket is a win: A win followed by a win happens with a probability p^{2}. Since we win two $\$ 5$ prizes consecutively in this case, the expected number of tickets in this case is 2 .
Using these events and their corresponding probabilities, we can write the expectation as

$$
\begin{aligned}
& E[X]=(E[X]+1)(1-p)+(E[X]+2)(p(1-p))+2 p^{2} \\
& E[X]=\left(1-p^{2}\right) E[X]+1+p \\
& E[X]=\frac{1+p}{p^{2}}=\frac{1}{p}+\frac{1}{p^{2}}
\end{aligned}
$$

Substituting $p=10^{-2}$, we get $E[X]=10,100$.
Exercise: Show that the expected number of tickets you need to purchase until you win $n \$ 5$ awards in consecutive order is

$$
\sum_{k=1}^{n} \frac{1}{p^{k}}
$$

Note that the random variable X that represents the number of rolls before we see two $\$ 5$ prizes consecutively is NOT a geometric random variable. To see this, consider a sequence $T_{0}, T_{1}, T_{2}, \ldots$ of tickets purchased. We will have $X=i+1$ if both T_{i}, T_{i+1} are wins and this is happening for the first time. However, the probability of both being wins depends on the outcome of events T_{i-1}, T_{i} being (Loss, Win) or (Win, Loss) or (Loss, Loss). The memoryless property is not valid here.
One way to resolve this problem is to consider a different random variable \hat{X} such that the probability of $\hat{X}=i+1$ is

$$
P(\hat{X}=i+1)=P(X=i+1 \mid X=i \text { was not a consecutive win }) .
$$

The memoryless property holds for this new random variable. (One student correctly used this approach to answer the question.)
4. (a) The probability $P\{X=13\}=1 / n$ since X takes each value \mathcal{S} with equal probability and there are n elements in \mathcal{S}. Also, since $X=13$ has been observed $2 n+1 \geq 13$. This implies that $n_{\mathrm{ML}}=6$.
(b) Since the three observations are independent, if $2 n+1 \geq 13$,

$$
P\left\{X_{1}=13, X_{2}=7, X_{3}=9\right\}=P\left\{X_{1}=13\right\} \cdot P\left\{X_{2}=7\right\} \cdot P\left\{X_{3}=9\right\}=\frac{1}{n^{3}}
$$

Hence, a reasonable estimate would be $\hat{n}_{\text {ML }}=6$, as that would maximize $P\left\{X_{1}=\right.$ $\left.13, X_{2}=7, X_{3}=9\right\}$.

