ECE 313: Exam I Conflict

Tuesday, February 27, 2024 7:00 p.m. - 8:15 p.m.

1. (a)

$$
\begin{aligned}
P(A) & =\frac{3}{6}=\frac{1}{2} \\
P(B) & =\frac{3}{6}=\frac{1}{2} \\
P(C) & =\frac{4}{36}=\frac{1}{9} \\
P(A B C) & =P(X=3, Y=6)=\frac{1}{36}
\end{aligned}
$$

Therefore, it is true that $P(A B C)=P(A) P(B) P(C)$.
(b) No, since

$$
P(A B)=P(X=3)=\frac{1}{6} \neq \frac{1}{4}=P(A) P(B)
$$

or

$$
P(A C)=P(X=3, Y=6)=\frac{1}{36} \neq \frac{1}{18}=P(A) P(C)
$$

or

$$
\begin{aligned}
P(B C) & =P(X=3, Y=6)+P(X=4, Y=5)+P(X=5, Y=4) \\
& =\frac{3}{36} \neq \frac{1}{18}=P(B) P(C)
\end{aligned}
$$

indicates that these events are not pairwise independent, hence not independent.
2. (a)

$$
\begin{array}{r}
p_{X}(-2)+p_{X}(0)+p_{X}(m)+p_{X}(m+2)=1 \\
9 c_{1}+c_{1}+c_{2}+c_{2}=1 \\
10 c_{1}+2 c_{2}=1 \tag{3}
\end{array}
$$

Additionally,

$$
\begin{align*}
p_{X}(m+2) & =5 p_{X}(0) \tag{4}\\
c_{2} & =5 c_{1} \tag{5}
\end{align*}
$$

Solving this system of equations gives

$$
\begin{align*}
& c_{1}=\frac{1}{20} \tag{6}\\
& c_{2}=\frac{1}{4} \tag{7}
\end{align*}
$$

(b)

$$
\begin{align*}
-2 \cdot \frac{1}{20} \frac{1}{3}^{-2}+0+\frac{m}{4}+\frac{m+2}{4} & =0 \tag{8}\\
-\frac{9}{10}+\frac{m}{2}+\frac{1}{2} & =0 \tag{9}\\
m & =\frac{4}{5} \tag{10}
\end{align*}
$$

(c) We know $\operatorname{Var}(X)=E\left[X^{2}\right]+E[X]^{2}=E\left[X^{2}\right]$. So

$$
\begin{align*}
E\left[X^{2}\right] & =4 \cdot \frac{1}{20}\left(\frac{1}{3}\right)^{-2}+0+\frac{\frac{16}{25}}{4}+\frac{\left(\frac{14}{5}\right)^{2}}{4} \tag{11}\\
& =\frac{9}{5}+\frac{4}{25}+\frac{196}{4 \cdot 25} \tag{12}\\
& =\frac{45}{25}+\frac{4}{25}+\frac{49}{25} \tag{13}\\
& =\frac{98}{25} \tag{14}
\end{align*}
$$

(d) $\operatorname{Pr}\{|X| \geq 2\}=\operatorname{Pr}\{X \geq 2\}+\operatorname{Pr}\{X \leq-2\}=\operatorname{Pr}\left\{X=\frac{14}{5}\right\}+\operatorname{Pr}\{X=-2\}=\frac{1}{4}+\frac{9}{20}=\frac{7}{10}$ $\mathbb{E}[|X|]=2\left(\frac{1}{20}\right)\left(\frac{1}{3}\right)^{-2}+\frac{4}{5} \cdot \frac{1}{4}+\frac{14}{5} \cdot \frac{1}{4}=\frac{9}{10}+\frac{1}{5}+\frac{7}{10}=\frac{9+2+7}{10}=\frac{9}{5}$
3. (a) This condition is satisfied when only A or only B happens. For only A to happen, the event $A \cap B^{c}$ must happen. For only B to happen, the event $A^{c} \cap B$ must happen. Therefore

$$
\begin{align*}
P\left(\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right) & \left.=P\left(A \cap B^{c}\right)+P\left(A^{c} \cap B\right)-P\left(A \cap B^{c} \cap A^{c} \cap B\right)\right) \tag{15}\\
& =P\left(A \cap B^{c}\right)+P\left(A^{c} \cap B\right) \tag{16}
\end{align*}
$$

Alternatively, this can be expressed as a complement of another event. For only one event to happen, neither $A \cap B$ nor $A^{c} \cap B^{c}$ can happen.

$$
\begin{align*}
\left.P\left((A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right)^{c}\right) & =1-P\left((A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right) \tag{17}\\
& =1-\left(P(A \cap B)+P\left(A^{c} \cap B^{c}\right)\right) \tag{18}\\
& =1-P(A \cap B)-P\left(A^{c} \cap B^{c}\right) \tag{19}\\
& =1-P(A \cap B)-(1-P(A \cup B)) \tag{20}\\
& =P(A \cup B)-P(A \cap B) \tag{21}
\end{align*}
$$

(b) This can be represented as a binomial distribution where heads is a success and tails is a failure.
When n is even, we must have $\frac{n}{2}$ successes and $\frac{n}{2}$ failures. Therefore the probability is defined by the pmf to be

$$
\binom{n}{\frac{n}{2}}\left(\frac{1}{4}\right)^{\frac{n}{2}}\left(\frac{3}{4}\right)^{\frac{n}{2}}
$$

When n is odd, it is impossible to have an equal number of heads and tails.
(c) Since X and Y are non-negative random variables upper bounded by 10 , we know $0 \leq X \leq 10,0 \leq Y \leq 10$, and thus $0 \leq X^{2} \leq 100,0 \leq Y^{2} \leq 100$. Besides, $X^{2}+Y^{2} \leq 20$ indicates $\left(100-X^{2}\right)+\left(100-Y^{2}\right) \geq 180$, so it is convenient to define two new random variables: $X^{\prime}=100-X^{2}$ and $Y^{\prime}=100-Y^{2}$. Note that X^{\prime} and Y^{\prime} are also non-negative random variables, so

$$
\begin{align*}
P\left(X^{2}+Y^{2} \leq 20\right) & =P\left(X^{\prime}+Y^{\prime} \geq 180\right) \tag{22}\\
& \leq \frac{E\left[X^{\prime}+Y^{\prime}\right]}{180} \tag{23}\\
& =\frac{E\left[X^{\prime}\right]}{180}+\frac{E\left[Y^{\prime}\right]}{180} \tag{24}\\
& =\frac{E\left[100-X^{2}\right]}{180}+\frac{E\left[100-Y^{2}\right]}{180} \tag{25}\\
& =\frac{100-(E[X])^{2}-\operatorname{Var}(X)}{180}+\frac{100-(E[Y])^{2}-\operatorname{Var}(Y)}{180} \tag{26}\\
& =\frac{100-4-1}{180}+\frac{100-4-2}{180} \tag{27}\\
& =\frac{21}{20} \tag{28}
\end{align*}
$$

4. (a) $\hat{n}_{M L}=5$. If it were lower, then 17 would not be a realizable value. If it were higher, then the probability of $X=17$ would decrease.
(b)

$$
\begin{align*}
P(X=2 \cup X=3) & =P(X=2)+P(X=3) \tag{29}\\
& =p(1-p)+p(1-p)^{2} \tag{30}\\
& =p-p^{2}+p-2 p^{2}+p^{3} \tag{31}\\
& =p^{3}-3 p^{2}+2 p \tag{32}
\end{align*}
$$

We need to maximize this sum, so we can derive and find the extrema.

$$
\begin{equation*}
\left(p^{3}-3 p^{2}+2 p\right) \frac{d}{d p}=3 p^{2}-6 p+2 \tag{33}
\end{equation*}
$$

With the quadratic formula, we can find that this polynomial equals zero when $p=\frac{3 \pm \sqrt{3}}{3}$. We know $\frac{3+\sqrt{3}}{3}$ is not a valid probability, so $\frac{3-\sqrt{3}}{3}$ is our extrema. We can also check for concavity. The second derivative is $6 p-6$, so as long as $p<1$ the second derivative is negative and the function is concave down. Therefore our extrema is a maximum, and we can say that

$$
\hat{p}=\frac{3-\sqrt{3}}{3}
$$

