
University of Illinois Spring 2024

ECE 313: Problem Set 8: Solutions
Due: Friday, March 22 at 7 p.m.
Reading: ECE 313 Course Notes, Sections 3.3 - 3.5
Note on reading: For most sections of the course notes there are short answer questions at the

end of the chapter. We recommend that after reading each section you try answering the short
answer questions. Do not hand these in; answers to the short answer questions are provided in the
appendix of the notes.
Note on turning in homework: Homework is assigned on a weekly basis on Fridays, and is

due by 7 p.m. on the following Friday. Please write down your work and derivations. An
answer without justification as of how it is found will not be accepted. You must upload
handwritten homework to Gradescope. Alternatively, you can typeset the homework in LaTeX.
However, no additional credit will be awarded to typeset submissions. No late homework will be
accepted.
Please write on the top right corner of the first page:
NAME
NETID
SECTION
PROBLEM SET #
Page numbers are encouraged but not required. Five points will be deducted for improper head-
ings. Please assign your uploaded pages to their respective question numbers while submitting
your homework on Gradescope. 5 points will be deducted for incorrectly assigned page
numbers.

1. [Customer support center]

(a) Let X denote the number of calls during the interval of 2 minutes. As described in
the course notes, the event of interest follows a Poisson distribution with mean λ× 2 =
5× 2 = 10, and thus we get:

Pr(X = 4) =
104

4!
e−10 ≈ 0.0189.

(b) Let Y denote the number of calls during the interval of one minute. Then

Pr(Y ≥ 3) =1− Pr(X < 3)

=1− (Pr(X = 0) + Pr(X = 1) + Pr(X = 2))

=1−
(
e−5 + 5e−5 +

52

2!
e−5

)
=1− 37e−5

2
≈ 0.875.

2. [Poisson Process Intervals]

(a) Each ”step” in a Poisson process has rate λ. We are counting successes over 5 steps, so
we have a Poisson distribution with rate 5λ. Therefore

P (N5 = 7) = e−5λ (5λ)
7

7!



(b) N8 −N3 is also counting successes over 5 steps. Therefore

P (N8 −N3 = 7) = e−5λ (5λ)
7

7!

The expected value of a Poisson random variable over five units of time is

E[N8 −N3] = 5λ

(c) If we can break this problem into non-overlapping intervals, we can take advantage of
their statistical independence. To this end, we can think of the properties of N8 −N5,
N5 −N4, and N4 −N3. We know that there were 5 successes in N5 −N4. For there to
have been 7 total successes gives us 3 possible cases:

i. N8 −N5 = 0, N4 −N3 = 2

ii. N8 −N5 = 1, N4 −N3 = 1

iii. N8 −N5 = 2, N4 −N3 = 0

Therefore the probability of the original event can be expressed as the union of these
three (disjoint) events.

P (N8 −N3 = 7|N5 −N4 = 5) = P (N8 −N5 = 0 ∩N4 −N3 = 2)

+ P (N8 −N5 = 1 ∩N4 −N3 = 1)

+ P (N8 −N5 = 2 ∩N4 −N3 = 0) (1)

= P (N8 −N5 = 0)P (N4 −N3 = 2)

+ P (N8 −N5 = 1)P (N4 −N3 = 1)

+ P (N8 −N5 = 2)P (N4 −N3 = 0) (2)

= (e−3λ (3λ)
0

0!
)(e−λ (λ)

2

2!
)

+ (e−3λ (3λ)
1

1!
)(e−λ (λ)

1

1!
)

+ (e−3λ (3λ)
2

2!
)(e−λ (λ)

0

0!
) (3)

= e−4λ(
λ2

2
+ 3λ2 +

9λ2

2
) (4)

= e−4λ(8λ2) (5)

You can note that this is equal to e−4λ( (4λ)
2

2! ).
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(d) We can use Bayes’ Theorem based on our previous answers.

P (N5 −N4 = 5|N8 −N3 = 7) =
P (N8 −N3 = 7|N5 −N4 = 5)P (N5 −N4 = 5)

P (N8 −N3 = 7)
(6)

=
e−4λ( (4λ)

2

2! )e−λ( (λ)
5

5! )

e−5λ( (5λ)
7

7! )
(7)

=
7!

2!5!

(4λ)2λ5

(5λ)7
(8)

=

(
7

2

)(
4

5

)2(1

5

)5

(9)

≈ 0.0043 (10)

3. [Uniform Distributions]

The discriminant is given by

∆ = (2U)2 − 4V = 4(U2 − V )

When the equation has two real solutions, it is equivalent to say ∆ > 0, i.e. U2 > V .

As U , V are both uniformly and independently distributed on [0, 1], the probability of the
event U2 > V equals the area bounded by y = x2, x = 1, y = 0 in a common 2D coordinate
system. That is,

P (U2 > V ) =

∫ 1

0

∫ x2

0
dydx (11)

=

∫ 1

0
x2dx (12)

=
1

3
(13)

(14)

4. [Exponential Distributions I]

(a) If g ≥ 0,

P (G ≥ g) = 1− P (G ≤ g) (15)

= 1−
∫ g

0
λe−λudu (16)

= 1− λ(−λ)−1(e−λu)|g0 (17)

= 1− (1− e−λg) (18)

= e−λg (19)

= (3e)−g (20)

If g < 0, P (G ≥ g) = 1. Therefore,

P (G ≥ g) =

{
(3e)−g, g ≥ 0

1, g < 0.
(21)
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Alternatively, you may directly compute the probability as P (G ≥ g) = 1 − FG(g)
with FG(g) being the CDF of G, i.e.

FG(g) =

{
1− e−λg, g ≥ 0

0, g < 0.

to get the same result.

(b)

P (G > 4|G > 2) =
P (G > 4 ∩G > 2)

P (G > 2)

=
P (G > 4)

P (G > 2)

=
(3e)−4

(3e)−2

= (3e)−2

≈ 0.01504

P (G < 4|G > 2) =
P (G < 4 ∩G > 2)

P (G > 2)

=
P (G > 2)− P (G ≥ 4)

P (G > 2)

=
(3e)−2 − (3e)−4

(3e)−2

= 1− (3e)−2

≈ 0.98496

P (G > 2|G < 4) =
P (G < 4 ∩G > 2)

P (G < 4)

=
P (G > 2)− P (G ≥ 4)

1− P (G ≥ 4)

=
(3e)−2 − (3e)−4

1− (3e)−4

≈ 0.01481

Alternative methods:

• P (G > 4|G > 2) can be obtained directly by the memoryless property of exponential
distribution;

• P (G < 4|G > 2) = 1− P (G ≥ 4|G > 2) = 1− P (G > 4|G > 2);

• P (G > 2|G < 4) = P (G<4|G>2)P (G>2)
P (G<4) (Bayes Formula).

5. [Understanding the Exponential]
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(a) According to the course notes (p.105), we know

E[X4] =
4!

λ4
=

24

λ4

E[X2] =
2!

λ2
=

2

λ2

Therefore,

E[X4]− E[X2] = 0 ⇐⇒ 24

λ4
=

2

λ2

⇐⇒ λ2 = 12

⇐⇒ λ = 2
√
3

(b)

P (⌈X3⌉ = 8) = P (
3
√
7 < X ≤ 2)

= (1− e−2λ)− (1− e−
3√7λ)

= e−
3√7λ − e−2λ

P (e < eX < e2) = P (1 < X < 2)

= (1− e−2λ)− (1− e−λ)

= e−λ − e−2λ

Therefore,

P (⌈X3⌉ = 8) + P (e < eX < e2) = e−λ + e−
3√7λ − 2e−2λ

6. [(Extra Credit) Exponential Distributions II]

(a) Let X1, X2 be exponential random variables such that X = min(X1, X2). Note that for
real numbers a, b, if min(a, b) > c, then a > c and b > c. Then for c ≥ 0,

P (X ≤ c) = 1− P (X > c) (22)

= 1− P (X1 > c ∩X2 > c) (23)

= 1− P (X1 > c)P (X2 > c) (24)

= 1− e−2λc (25)

Again, the CDF is 0 for c < 0.

Note that this is just the CDF of Exp(2λ) distribution.

(b) Let B1, B2, and B3 denote the lifetime of battery 1, 2, and 3, respectively. Further, let
T1 denote the time until the first failure occurs. Then we know T1 = min(B1, B2) and
by (a), T1 ∼ Exp(2λ), so

E[T1] =
1

2λ

Next, let T2 denote the time between the first failure and the second. Without loss of
generality, assume that B1, failing at t = tm, is the first battery that failed. Let ∆B
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denote the time between tm and the failure of B2. By memoryless property, ∆B ∼
Exp(λ) given that B2 > tm since P (∆B > tn|B2 > tm) = P (B2 > tm + tn|B2 > tm) =
P (B2 > tn) (Note: The last paragraph of course notes p.105 may help you
to understand this part). Now we can write T2 = min(B3,∆B), which also satisfies
T2 ∼ Exp(2λ) and thus gives

E[T2] =
1

2λ

Finally, we have E[device working time] = E[T1] + E[T2] =
1
2λ + 1

2λ = 1
λ .

(c) We can use the same notation B1, B2, and B3 as in (b). Here, battery 1 must have a
longer lifetime than battery 2, so this time we assume B2 failed at t = tm and is the first
battery that failed. Similarly, let ∆B denote the time between tm and the failure of B1.

For battery 1 to be the last battery that still works, B1 > B2 (i.e. battery 1 must
outlast battery 2) and ∆B > B3 (i.e. after battery 2 dies, battery 1 must last longer
than battery 3).

With the law of total probability, we have

P (B1 > B2) =

∫ ∞

0
P (B1 > B2|B2 = k)fB2(k)dk

=

∫ ∞

0
P (B1 > k)λe−λkdk

=

∫ ∞

0
e−λkλe−λkdk

=

[
−1

2
e−2λk

]∞
0

=
1

2

and similarly, P (∆B > B3) =
1
2 . These probabilities being

1
2 should be intuitive through

the memoryless property of exponential random variables. As B1 > B2 and ∆B > B3

are independent events,

P (battery 1 is the last battery that still works) = P (B1 > B2)P (∆B > B3) =
1

4
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