ECE 313: Problem Set 5: Solutions

1. [Maximum-likelihood Estimation]

(a) If $\hat{n}_{M L}<5$, then the highest value X can be is <9.
(b) We want to maximize $p_{X}(9)=\frac{1}{n}$ by choosing the best value of n. In this case its clear that $\frac{1}{n}$ is decreasing for positive integer n. Therefore when n is as small as possible, $p_{X}(9)$ is as big as possible. The smallest value n can take with $X=9$ being possible is 5. Therefore

$$
\hat{n}_{M L}=5
$$

(c) Again, $\frac{k}{n^{2}}$ is a decreasing function for positive integers n. The smallest value n can take with $X=9$ being possible is 5 . Therefore

$$
\hat{n}_{M L}=5
$$

(d) Unlike the other functions, this pmf is not uniformly decreasing for positive integers when $k=9$. When we compute the values, we see that

n	5	6	7	8	9	10	11	12	13
$P(X=9 \mid n)$	0.04	0.0833	0.1020	0.1094	0.1111	0.11	0.1074	0.1042	0.1006

Numerically, it seems like $n=9$ gives the highest likelihood estimate. We can say that

$$
\hat{n}_{M L}=9
$$

We can also verify this by modeling $p_{X}(9)=\frac{2 n-9}{n^{2}}$ as the continuous function $L(x)=$ $\frac{2 x-9}{x^{2}}$, where x can be any real number. We can find that $L^{\prime}(x)=2\left(\frac{9-x}{x^{3}}\right)$, which equals 0 when $x=9$ and is negative for any $x>9$.

2. [Markov Inequality]

(a) X is non-negative, so we can directly apply the Markov Inequality. The expected value of a discrete uniform random variable is $\frac{a+b}{2}$, so in this case $E[X]=5$. Therefore

$$
P(X \geq c) \leq \frac{5}{c}
$$

For the rest of these problems, we will implicitly note that X is non-negative.
Now, the probability that $X>c$ can be found by enumerating the cases. There are multiple ways to express the result, but one example is

$$
P(X \geq c)= \begin{cases}1 & \text { if } c \leq 1 \\ \frac{10-\lceil c\rceil}{9} & \text { if } 1<c \leq 9 \\ 0 & \text { if } c>9\end{cases}
$$

We can see that, for positive values of c, the Markov bound always holds. Note that the bound only provides nontrivial information when $c>E[X]$.
(b) The expected value of a binomial random variable is $n p$. Therefore $E[X]=5$, and

$$
P(X \geq c) \leq \frac{5}{c}
$$

We know that $P(X=k)=\binom{10}{k}(0.5)^{10}$. A little more work can show that

$$
P(X \geq c)= \begin{cases}1 & \text { if } c \leq 0 \\ \frac{1023}{1024} & \text { if } 0<c \leq 1 \\ \frac{1013}{1024} & \text { if } 1<c \leq 2 \\ \frac{121}{128} & \text { if } 2<c \leq 3 \\ \frac{53}{64} & \text { if } 3<c \leq 4 \\ \frac{319}{512} & \text { if } 4<c \leq 5 \\ \frac{193}{512} & \text { if } 5<c \leq 6 \\ \frac{11}{64} & \text { if } 6<c \leq 7 \\ \frac{7}{128} & \text { if } 7<c \leq 8 \\ \frac{11}{1024} & \text { if } 8<c \leq 9 \\ \frac{1}{1024} & \text { if } 9<c \leq 10 \\ 0 & \text { if } c>10\end{cases}
$$

and all these values are bounded by the corresponding Markov bound $\frac{5}{c}$ for positive c.
(c) The expected value of a binomial random variable is $\frac{1}{p}$. Therefore $E[X]=5$, and

$$
P(X \geq c) \leq \frac{5}{c}
$$

We know that $P(X=c)=(0.2)(0.8)^{c-1}$. We can use the geometric series formula

$$
\sum_{k=1}^{n} r^{k-1}=\frac{1-r^{n}}{1-r}
$$

to help simplify.
In our case, we have

$$
\begin{align*}
P(X \geq c) & =1-P(X<c) \tag{1}\\
& =1-\sum_{k=1}^{\lceil c\rceil-1}\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{k-1} \tag{2}\\
& =1-\frac{1}{5} \sum_{k=1}^{\lceil c\rceil-1}\left(\frac{4}{5}\right)^{k-1} \tag{3}\\
& =1-\frac{1}{5} \frac{1-\left(\frac{4}{5}\right)^{\lceil c\rceil-1}}{\frac{1}{5}} \tag{4}\\
& =1-\left(1-\left(\frac{4}{5}\right)^{\lceil c\rceil-1}\right) \tag{5}\\
& =\left(\frac{4}{5}\right)^{\lceil c\rceil-1} \tag{6}
\end{align*}
$$

Therefore,

$$
P(X \geq c)= \begin{cases}\left(\frac{4}{5}\right)^{\lceil c\rceil-1} & \text { if } c \geq 1 \\ 1 & \text { otherwise }\end{cases}
$$

We know that the Markov inequality bounds the actual probability when

$$
P(X \geq c) \leq \frac{E[X]}{c}
$$

. We can use the identities provided in the Campuswire hint to help us.

$$
\begin{align*}
P(X \geq c) & =\left(\frac{4}{5}\right)^{\lceil c\rceil-1} \tag{8}\\
& =\left(1-\frac{1}{5}\right)^{\lceil c\rceil-1} \tag{9}\\
& \leq \exp \left(\left(-\frac{1}{5}\right)(\lceil c\rceil-1)\right) \tag{10}\\
& \leq \frac{1}{1+\frac{1}{5}(\lceil c\rceil-1)} \tag{11}\\
& =\frac{5}{4+\lceil c\rceil} \tag{12}\\
& \leq \frac{5}{c} \tag{13}
\end{align*}
$$

3. [Chebychev inequality]

(a) With the pmf of X, we can compute that $E[X]=0$ and $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=$ $\frac{16+9+4+1+0+1+4+9+16}{9}=\frac{20}{3}$. Therefore the Chebychev inequality here is

$$
P(|X| \geq c) \leq \frac{20}{3 c^{2}}
$$

In the meantime, the exact probabilities are

$$
P(|X| \geq c)= \begin{cases}1 & \text { if } c \leq 0 \\ \frac{10-2\lceil c\rceil}{9} & \text { if } 0<c \leq 4 \\ 0 & \text { if } c>4\end{cases}
$$

and thus we can check that for any positive c, the exact probability is smaller than or equal to the bound given by Chebychev inequality.
(b) Here we have $E[X]=n p=5$ and $\operatorname{Var}(X)=n p(1-p)=\frac{5}{2}$. By Chebychev inequality,

$$
P(|X-5| \geq c) \leq \frac{5}{2 c^{2}}
$$

In the meantime, we can compute the exact probabilities as

$$
P(|X-5| \geq c)= \begin{cases}1 & \text { if } c \leq 0 \\ \frac{193}{256} & \text { if } 0<c \leq 1 \\ \frac{11}{32} & \text { if } 1<c \leq 2 \\ \frac{7}{64} & \text { if } 2<c \leq 3 \\ \frac{11}{512} & \text { if } 3<c \leq 4 \\ \frac{1}{512} & \text { if } 4<c \leq 5 \\ 0 & \text { if } c>5\end{cases}
$$

For any positive c, the bound given by Chebyshev inequality holds.
(c) No, because the Markov inequality only applies for non-negative random variables.

Alternatively, one may observe that for (a), $E[X]=0$, so the Markov bound is 0 as well. However, $P(X \geq c) \leq 0$ does not always hold (e.g. when $c=0$).

4. [Confidence Interval]

According to (2.15) in course notes,

$$
P\left(p \in\left(\hat{p}-\frac{a}{2 \sqrt{n}}, \hat{p}+\frac{a}{2 \sqrt{n}}\right)\right) \geq 1-\frac{1}{a^{2}}
$$

where for this problem,

$$
\begin{aligned}
1-\frac{1}{a^{2}} & =0.98 \\
\frac{a}{2 \sqrt{n}} & \leq 0.01
\end{aligned}
$$

Then we can conclude that $n \geq 125000$.

