ECE 313: Problem Set 4: Solutions

1. [Binomial and Poisson]

(a) Let $q=1-p$. We can use the binomial series to help us solve $P(X$ is even $)+P(X$ is odd $)$ and $P(X$ is even $)-P(X$ is odd $)$. We have

$$
\begin{aligned}
& P(X \text { is even })+P(X \text { is odd }) \\
& =\binom{n}{0} p^{0} q^{n}+\binom{n}{1} p^{1} q^{n-1}+\binom{n}{2} p^{2} q^{n-2}+\binom{n}{3} p^{3} q^{n-3}+\ldots \\
& =(q+p)^{n}=1
\end{aligned}
$$

and

$$
\begin{aligned}
& P(X \text { is even })-P(X \text { is odd }) \\
& =\binom{n}{0} p^{0} q^{n}-\binom{n}{1} p^{1} q^{n-1}+\binom{n}{2} p^{2} q^{n-2}-\binom{n}{3} p^{3} q^{n-3}+\ldots \\
& =\binom{n}{0}(-p)^{0} q^{n}+\binom{n}{1}(-p)^{1} q^{n-1}+\binom{n}{2}(-p)^{2} q^{n-2}+\binom{n}{3}(-p)^{3} q^{n-3}+\ldots \\
& =(q-p)^{n}
\end{aligned}
$$

Therefore,

$$
P(X \text { is odd })=\frac{(q+p)^{n}-(q-p)^{n}}{2}=\frac{1-(1-2 p)^{n}}{2}
$$

(b) We have

$$
\begin{aligned}
P(Y \text { is even })+P(Y \text { is odd }) & =e^{-\lambda} \frac{\lambda^{0}}{0!}+e^{-\lambda} \frac{\lambda^{1}}{1!}+e^{-\lambda} \frac{\lambda^{2}}{2!}+e^{-\lambda} \frac{\lambda^{3}}{3!}+\ldots \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} e^{\lambda}=1
\end{aligned}
$$

and

$$
\begin{aligned}
P(Y \text { is even })-P(Y \text { is odd }) & =e^{-\lambda} \frac{\lambda^{0}}{0!}-e^{-\lambda} \frac{\lambda^{1}}{1!}+e^{-\lambda} \frac{\lambda^{2}}{2!}-e^{-\lambda} \frac{\lambda^{3}}{3!}+\ldots \\
& =e^{-\lambda} \frac{(-\lambda)^{0}}{0!}+e^{-\lambda} \frac{(-\lambda)^{1}}{1!}+e^{-\lambda} \frac{(-\lambda)^{2}}{2!}+e^{-\lambda} \frac{(-\lambda)^{3}}{3!}+\ldots \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{(-\lambda)^{k}}{k!} \\
& =e^{-\lambda} e^{-\lambda}=e^{-2 \lambda}
\end{aligned}
$$

Therefore,

$$
P(Y \text { is odd })=\frac{1-e^{-2 \lambda}}{2}
$$

(c) As stated in (2.9) in the course notes,

$$
\left(1-\frac{\lambda}{n}\right)^{n} \rightarrow e^{-\lambda} \text { as } n \rightarrow \infty
$$

Therefore,

$$
\begin{aligned}
P(X \text { is odd }) & =\frac{1-(1-2 p)^{n}}{2} \\
& =\frac{1-\left(1-\frac{2 \lambda}{n}\right)^{n}}{2} \\
& \rightarrow \frac{1-e^{-2 \lambda}}{2} \\
& =P(Y \text { is odd }) \text { as } n \rightarrow \infty
\end{aligned}
$$

2. [Waiting for Success]

(a) Since $X \sim \operatorname{Geo}(p)$, using the memoryless property of geometric random variables, we have

$$
E[X \mid X>10]=10+E[X]=10+\frac{1}{p}=14
$$

Alternative Approach: As $(X=x) \cap(X>10)=\left\{\begin{array}{l}\Phi, \text { if } x \leq 10 \\ X=x, \text { if } x>10\end{array}\right.$, according to the definition of conditional expectation,

$$
\begin{aligned}
E[X \mid X>10] & =\sum_{x=1}^{\infty} x P(X=x \mid X>10) \\
& =\sum_{x=1}^{10} 0+\sum_{x=11}^{\infty} x \frac{P(X=x)}{P(X>10)} \\
& =\sum_{x=11}^{\infty} x \frac{(1-p)^{x-1} p}{(1-p)^{10}} \\
& =\sum_{x=11}^{\infty} x(1-p)^{x-11} p \\
& =\sum_{k=1}^{\infty}(10+k)(1-p)^{k-1} p \\
& =10 \sum_{k=1}^{\infty}(1-p)^{k-1} p+\sum_{k=1}^{\infty} k(1-p)^{k-1} p \\
& =10+\frac{1}{p}=14
\end{aligned}
$$

(b) By LOTUS,

$$
\begin{aligned}
E\left[\sin \left(\frac{[2 X+1] \pi}{2}\right)\right] & =\sum_{x=1}^{\infty} \sin \left(\frac{[2 x+1] \pi}{2}\right) P(X=x) \\
& =\sum_{x=1}^{\infty}(-1)^{x}(1-p)^{x-1} p \\
& =\frac{p}{1-p} \sum_{x=1}^{\infty}(p-1)^{x} \\
& =\frac{p}{1-p} \cdot\left(\frac{1}{1-(p-1)}-1\right)=-\frac{1}{7}
\end{aligned}
$$

3. [Bins and Balls]

(a) Let R_{2} be the event where the first two balls you draw are red. Let R_{L} be the event where the last ball you draw is red. We can also note that $P\left(R_{2} \cap R_{L}\right)=P\left(R_{3}\right)$, where R_{3} denotes the event that the first three balls you draw are red.
In general, the probability that the first two balls you draw are red is $\frac{\binom{r}{2}}{\binom{+b}{2}}$, which is only defined when $r \geq 2$. This also simplifies to $\frac{r(r-1)}{(r+b)(r+b-1)}$.
If $r=2$, then obviously $P\left(R_{L} \mid R_{2}\right)=0$. Otherwise,

$$
\begin{align*}
P\left(R_{L} \mid R_{2}\right) & =\frac{P\left(R_{L} \cap R_{2}\right)}{P\left(R_{2}\right)} \tag{1}\\
& =\frac{P\left(R_{3}\right)}{P\left(R_{2}\right)} \tag{2}\\
& =\frac{\frac{\left(l_{3}^{(r+b}\right)}{(r+b)}}{\frac{r(1)}{(r+b)(r+b-1)}} \tag{3}\\
& =\frac{\frac{r(r-1)(r-2)}{(r+b)(r+b-1)(r+b-2)}}{\frac{r(r-1)}{(r+b)(r+b-1)}} \tag{4}\\
& =\frac{(r-2)}{(r+b-2)} \tag{5}
\end{align*}
$$

So,

$$
P\left(R_{L} \mid R_{2}\right)= \begin{cases}0 & \text { if } r \leq 2 \\ \frac{r-2}{r+b-2} & \text { if } r>2\end{cases}
$$

(b) Let B_{1} be the event that the first ball you draw is blue, and let N_{k} be the event that k of the n balls you drew were blue. Then we need to find $P\left(B_{1} \mid N_{k}\right)$. This is equivalent to $\frac{P\left(B_{1} \cap N_{k}\right)}{P\left(N_{k}\right)}$.
$P\left(N_{k}\right)=0$ if $b<k$. Otherwise, assuming that we are equally likely to draw any ball, it is $\frac{\binom{b}{k}\binom{r}{n}}{\binom{+b}{n}}$.
Again, $P\left(B_{1} \cap N_{k}\right)=0$ if $b<k$. Otherwise, the probability that the first ball you drew is blue, and that you drew k blue balls, is similar to what we did before. In this case, we have a $\frac{b}{b+r}$ chance for the first ball we draw to be blue. After that, we have have $n-1$
picks left, with $b-1$ blue balls and r red balls to pick from. So in total, the probability becomes $\frac{b}{b+r} \cdot \frac{\binom{b-1}{k-1}\binom{r}{n-k}}{\binom{b+r-1}{n-1}}$.
Putting these two terms in a fraction and simplifying gives $\frac{k}{n}$.
Therefore

$$
P\left(B_{1} \mid N_{k}\right)= \begin{cases}0 & \text { if } k>b \\ \frac{k}{n} & \text { if } k \leq b\end{cases}
$$

4. [More on Throwing Dice]

(a) There are 6 outcomes where E is satisfied: $(1,6),(2,5),(3,4)$, and their opposites. Therefore $P(E)=\frac{1}{6}$. Also, $P(F)=\frac{1}{6}$. The intersection between these two events is one outcome, $(4,3)$. Therefore because $P(E \cap F)=P(E) P(F)$, the two events are independent.
Like for F, there are 6 outcomes where G is satisfied. The intersection between E and G is again (4,3). Therefore because $P(E \cap G)=P(E) P(G)$, the two events are independent.
(b) Another way to show independence is to show that $P(E \mid F \cap G)=P(E)$. If we know that F and G are both satisfied, we know that the outcome must have been $(4,3)$. So $P(E \mid$ the roll was $(4,3))$ is obviously 1 . However, $P(E)=\frac{1}{36}$ as we previously showed. So E and $F \cap G$ are not independent.
(c) False by definition.
(d) Let A and B be two events. Mutually exclusivity implies that $P(A \cap B)=0$. If A and B are independent, then $0=P(A \cap B)=P(A) P(B)$, meaning that either $P(A)$ or $P(B)$ equals 0 . There are many possible solutions. A trivial example that meets this condition is:
Let A be the event where the sum of the two dice is 0 .
Let B be the event where the sum of the two dice is 1 .

These are both mutually exclusive and independent events.

5. [Bumped From The Flight]

(a) The mean of a Binomial distribution with $n=105$ trails and probability of success $p=0.9$ is

$$
E[X]=n p=94.5
$$

(b)

$$
\begin{aligned}
P(X \leq 100) & =1-P(X>100) \\
& =1-\sum_{k=101}^{105} P(X=k) \\
& =1-\sum_{k=101}^{105}\binom{105}{k} 0.9^{k}(0.1)^{105-k} \\
& \approx 0.98328368
\end{aligned}
$$

(c) The number of no-shows $Y=y$ is distributed as

$$
\begin{aligned}
P(Y=y) & =P(X=105-y) \\
& =\binom{105}{105-y} 0.9^{105-y} 0.1^{105-(105-y)} \\
& =\binom{105}{y} 0.1^{y} 0.9^{105-y}
\end{aligned}
$$

where we used

$$
\binom{105}{105-y}=\binom{105}{y}
$$

Hence, $Y \sim \operatorname{Binomial}(105,0.1)$.
(d) We can use the Poisson approximation for a Binomial distribution when n is large, p is small and $\lambda=n p$. For the Binomially distributed random variable Y, we can approximate it by using a Poisson distribution with $\lambda=105 * 0.1=10.5$,

$$
\begin{aligned}
P(Y \geq 5) & =1-P(Y<5) \\
& =1-\sum_{k=0}^{4} P(Y=k) \\
& =1-\sum_{k=0}^{4} \frac{\lambda^{k} e^{-\lambda}}{k!} \\
& =0.97890643
\end{aligned}
$$

The Poisson approximation is very close to the exact value and differs by less than 0.5%

