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1. [8 points] There are three distinct pairs of socks in a drawer. Three people, one by one,
randomly select two socks from the drawer, without replacement. What is the probability
that each person gets a pair of socks?

Solution: Method 1: Using counting argument. The probability is equal to the number of
ways of ordering three pair of socks, with each pair being together, over the total number of
ways of ordering six socks. Hence

3!(23)

6!
=

23

6 · 5 · 4
=

1

15
.

Method 2: Using conditional probability argument. Let ‘A‘ be the event that the first person
gets a pair of socks. Let ‘B‘ be the event that the second person gets a pair of socks. Let ‘C‘
be the event that the third person gets a pair of socks.

P (ABC) = P (A)P (B|A)P (C|AB) =
1

5
· 1

3
· 1 =

1

15
.

2. [14+5 points] Let X1, X2, . . . , Xn be independent observations drawn from a Poisson dis-
tribution with unknown parameter λ.

(a) Show that λ̂ML, the Maximum Likelihood estimator of λ, is the sample mean, i.e. λ̂ML =
1
n

∑n
i=1Xi. Is the ML estimator unbiased?

Solution: We treat X1, X2, . . . , Xn as a set of realized observations. To find the ML
estimator of λ, we maximize the corresponding likelihood function with respect to λ:

L(λ) =

n∏
i=1

e−λ
λXi

Xi!
= e−nλ

λX1+X2+···+Xn

X1!X2! · · ·Xn!

Taking the logarithm, we obtain:

ln(L(λ)) = −nλ+ (X1 +X2 + · · ·+Xn) ln(λ)− ln(X1!X2! · · ·Xn!).

Setting the derivative with respect to λ to zero and solving for λ, we obtain:

λ̂ML =
X1 +X2 + · · ·+Xn

n
= X̄.

It can be checked that the corresponding second derivative is negative. We now observe
that

E[λ̂ML] =
1

n

n∑
i=1

E[Xi] =
nλ

n
= λ.

Hence, the ML estimator is unbiased.



(b) For the ML estimator λ̂ML in part (a), find an upper bound of P (|λ̂ML − λ| ≥ δ) using

Chebyshev’s inequality and show that limn→∞ P (|λ̂ML − λ| ≥ δ) = 0.

Solution: Since E[λ̂ML] = λ and Var(λ̂ML) = Var( 1
n

∑n
i=1Xi) = 1

n2

∑n
i=1 Var(Xi) = λ

n ,
the application of Chebyshev’s inequality gives:

P (|λ̂ML − λ| ≥ δ) ≤
Var(λ̂ML)

δ2
=

λ

nδ2
−−−→
n→∞

0.

3. [8+4 points] Suppose X and Y are independent random variables with joint pdf:

fX,Y (u, v) =

{
2e−ue−2v if u ≥ 0, v ≥ 0

0 else.

(a) Find the joint pdf of S = X + Y and W = Y −X.
Solution: Note that [

S
W

]
= A

[
X
Y

]
, where A =

[
1 1
−1 1

]
.

Thus (S,W ) are obtained from a linear scaling of (X,Y ).

det(A) = 2, and A−1 =
1

2

[
1 −1
1 1

]
.

Furthermore

A−1
[
α
β

]
=

[α−β
2

α+β
2

]
.

Thus

fS,W (α, β) =
1

2
fX,Y

(
α− β

2
,
α+ β

2

)
=

{
e−

α−β
2 e−(α+β) = e−

3α
2 e−

β
2 if α ≥ β, α ≥ −β

0 else.

(b) Are S and W independent? Explain.
Solution: It is easily seen that the support of the joint pdf fS,W , which is defined
by region where α > max{β,−β} is not a product set. Therefore S and W are not
independent.

4. [7+5 points] Consider hypotheses H0 and H1 about a random variable Y . Under H0, Y
has a geometric distribution with p = 0.1. Under H1, Y has a geometric distribution with
p = 0.2.

(a) Find the ML decision rule in terms of Y . You might need the following: ln 2
ln 9

8

= 5.88,

1
ln 9

8

= 8.49.

Solution:

Λ(k) =
(0.8)k−10.2

(0.9)k−10.1
≥ 1,

we have k ≤ ln 2
ln 9

8

+ 1 = 6.88. Hence we declare H1 if k ≤ 6 and declare H0 if k ≥ 7.
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(b) Find pmiss for the ML rule in part (a). Express your answer in the form of ab, where a
is a real number and b is an integer.
Solution:

pmiss = P (declare H0|H1) =

∞∑
k=7

(0.8)k−10.2 = (0.8)6.

5. [4+4+9 points] Let X be a geometric random variable with p = 0.2.

(a) Find E[X].

Solution: E[X] = 1
0.2 = 5.

(b) Find E[X|X > 2].

Solution: E[X|X > 2] = 1
0.2 + 2 = 7.

(c) Find E[X2|X > 2].
Solution:

E[X2|X > 2] = E[(X − 2)2 + 4X − 4|X > 2]

= E[(X − 2)2|X > 2] + E[4X|X > 2]− 4

= V ar(X) + (E[X])2 + 4E[X|X > 2]− 4

=
0.8

0.04
+ 25 + 28− 4

= 69

6. [9+5+9 points] Bob flips two fair coins. Let X be the number of heads that are showing.
Mary now draws X cards with replacement from a fair deck of 52 cards. Let Y be the number
of clubs that she draws. (There are four suits in a deck of cards, each suit having 13 cards,
and club is one of the four suits.)

(a) Find the probability that Mary draws exactly one club.
Solution: From the law of total probability:

P{Y = 1} = P{Y = 1|X = 0}P{X = 0}+ P{Y = 1|X = 1}P{X = 1}
+ P{Y = 1|X = 2}P{X = 2}

since Y = 1 is not possible if X = 0,

P{Y = 1} = P{Y = 1|X = 1}P{X = 1}+ P{Y = 1|X = 2}P{X = 2}

=
1

4
× 1

2
+

(
2

1

)
× (

1

4
)× (

3

4
)× (

1

2
)2 =

1

8
+

3

32
=

7

32

(b) Suppose Mary draws exactly one club. Find the probability that Bob had tossed two
heads.
Solution: This is same as calculating P{X = 2|Y = 1}. Therefore,

P{X = 2|Y = 1} =
P{X = 2, Y = 1}

P{Y = 1}
=
P{Y = 1|X = 2}P{X = 2}

P{Y = 1}

=
3
32
7
32

=
3

7

3



(c) If Bob gets 2 points for each head and Mary gets 4 points for each club drawn, and they
split the total number of points equally between themselves, find the expected value of
the points they each receive.
Solution: Each receives W = 0.5 × (2X + 4Y ) points. Thus, E[W ] = E[X] + 2E[Y ].
Here E[X] = 0 × 1

4 + 1 × 1
2 + 2 × 1

4 = 1. Since Y depends on X, we calculate E[Y ] as
follows:

E[Y ] = E[Y |X = 0]P{X = 0}+ E[Y |X = 1]P{X = 1}+ E[Y |X = 2]P{X = 2}

= 0× 1

4
+ (0× 3

4
+ 1× 1

4
)× 1

2
+ (0× 9

16
+ 1× 6

16
+ 2× 1

16
)
1

4

=
1

4

Hence, E[W ] = 1 + 2× 1
4 = 3

2 .

7. [7+16+7 points] Suppose X ∼ N(1, 1) and Y ∼ N(1, 4) are independent Gaussian random
variables. Define the random variables Z = 2X + Y and W = X − Y .

(a) Find the unconstrained MMSE estimator of Y given X, and the resulting MSE.
Solution: Since X and Y are independent,

E[Y |X = u] =

∫ ∞
−∞

vfY |X(v|u)dv =

∫ ∞
−∞

vfY (v)dv = E[Y ] = 1

i.e., the unconstrained MMSE estimator is a constant estimator. Hence, the minimum
MSE is Var(Y ) = 4.

(b) Find the unconstrained MMSE estimator of Z given W , and the resulting MSE.

Solution: Since Z and W are jointly Gaussian RVs, E[Z|W ] = Ê[Z|W ], i.e., the un-
constrained MMSE estimator is the same as the MMSE linear estimator. Therefore,

E[Y |X] = Ê[Z|W ] = µZ +
Cov(Z,W )

V ar(W )
(W − µW )

MSE = σ2Z(1− ρ2z,w)

We calculate the mean, variance and covariance,

µZ = 2µX + µY = 2× 1 + 1 = 3; µW = µX − µY = 0

V ar(W ) = Cov(X − Y,X − Y ) = V ar(X)− 2Cov(X,Y ) + V ar(Y ) = 1− 0 + 4 = 5

V ar(Z) = Cov(2X + Y, 2X + Y ) = 4V ar(X) + 4Cov(X,Y ) + V ar(Y )

= 4− 0 + 4 = 8

Cov(Z,W ) = Cov(2X + Y,X − Y ) = 2V ar(X) + Cov(X,Y )− V ar(Y )

= 2× 1 + 0− 4 = −2

ρZ,W =
Cov(Z,W )

σWσZ
=

−2√
8× 5

=
−1√
10

and using these to compute:

E[Z|W ] = 3 +
−1√

10
×
√

8

5
× (W ) = 3− 2

5
W

MSE = σ2Z(1− ρ2Z,W ) = 8× (1− (
−1√
10

)2) =
36

5

4



(c) If instead W = X − aY for some real a and E[Z|W ] = E[Z], find a.

Solution: If E[Z|W ] = E[Z] this implies that Z and W are independent and hence
uncorrelated, i.e., Cov(Z,W ) = 0. Therefore,

Cov(Z,W ) = Cov(2X + Y,X − aY ) = 2V ar(X)− 2aCov(X,Y ) + Cov(X,Y )− aV ar(Y )

= 2− 4a = 0 =⇒ a =
1

2

8. [7+5 points] The probability that a circuit board coming off an assembly line needs rework
is 0.1. Suppose that 10 boards are tested and all boards are independent of each other, and
let X be the number of circuit boards that need rework.

(a) Find E[X2]

Solution: X ∼ binom(10, 0.1).
E[X] = 10× 0.1 = 1.
V ar(X) = 10× 0.1× 0.9 = 0.9
E[X2] = V ar(X) + (E[X])2 = 1.9

(b) What is the probability that exactly 8 boards need rework?

Solution: P{X = 8} =
(
10
8

)
× 0.18 × 0.92 =

(
10
2

)
× 0.18 × 0.92 = 729

2×109 .

9. [8+9 points] Suppose X and Y have joint pdf

fX,Y (u, v) =

{
2e−2v 0 ≤ u ≤ 1, v ≥ 0
0 else

(a) Find P{X ≥ Y }
Solution: P{X ≥ Y } =

∫ 1
0

∫ u
0 2e−2vdvdu =

∫ 1
0 (1− e−2u)du = 1+e−2

2

(b) Find P{XeY ≤ 1}
Solution: P{XeY ≤ 1} =

∫ 1
0

∫ −lnu
0 ae−2vdvdu =

∫ 1
0 (1− u2)du = 2

3

10. [10+10 points] Suppose X and Y are jointly Gaussian with the following parameters:
µx = 0, µy = 0, σ2x = 1, σ2y = 22, ρ = 1/8.

(a) Find P{2X + Y ≥ 3}. Express your answer using the Q function.

Solution: 2X + Y is Gaussian
E[2X + Y ] = 0
Var(2X + Y ) =COV(2X + Y, 2X + Y ) = 4Var(X) + 4COV(X,Y )+Var(Y )
= 4 + 4× 1

8 × 2 + 4 = 9

P{2X + Y ≥ 3} = P{2X+Y
3 ≥ 3

3} = Q(1)

(b) Find E[Y 2|X = 2]

Solution: E[Y |X = 2] = µx + σY ρ
(
2−µx
σX

)
= 1/2

Var(Y |X = 2) = σ2Y (1− ρ2) = 63/16
E[Y 2|X = 2] =Var(Y |X = 2) + (E[Y |X = 2])2 = 63/16 + 1/4 = 67/16.

11. [30 points] (3 points per answer)
In order to discourage guessing, 3 points will be deducted for each incorrect answer (no
penalty or gain for blank answers). A net negative score will reduce your total exam score.

(a) Consider a Poisson process of rate 1. Let T1 be the time of the first count and T2 be the
time of the second count.
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TRUE FALSE
� � The number of arrivals between T1 and T2 is a Poisson random variable.

� � T1 has the exponential distribution with parameter 1

� � T2 − T1 has the exponential distribution with parameter 2

Solution: False,True,False

(b) Suppose function FX(u) is the CDF of random variale X.

TRUE FALSE
� � FX(c) = FX(c−) must always hold for all c.

� � FX(u) is always monotonically increasing.

Solution: False, False

(c) Suppose X and Y are two random variables.

TRUE FALSE

� � If Cov(X,Y ) = 0 then Ê[Y |X] = E[Y ].

� � If Cov(X,Y 2) = 1, X and Y are dependent.

Solution: True, True

(d) Consider the binary hypothesis problem. Let the probability of false alarm and missed
detection for the ML rule be denoted by pML

f and pML
m , respectively. Similarly, let the

probability of false alarm and missed detection for the MAP rule be denoted by pMAP
f

and pMAP
m , respectively.

TRUE FALSE
� � pMAP

f +pMAP
m = 1.

� � π0p
MAP
f + π1p

MAP
m ≥ π0pML

f + π1p
ML
m .

� � If π1 = 0.5 then pML
f = pMAP

f .

Solution: False, False, True
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