ECE 313: Hour Exam I

Wednesday, February 27, 2019 $8:45$ p.m. $-10:00$ p.m.

- 1. [10+10 points] An experiment consists of observing the content of an 8-bit register. We assume that all 256 byte values are equally likely to be observed.
	- (a) Let B denote the event that the register contains 5 ONEs and 3 ZEROes. What is $P(B)$?

Solution: Using the principle of over counting, we index each of the 5 ONEs and each of the 3 ZEROes to make them distinct. There are 8! possible bytes using the distinct ONE and ZEROs. For any one of these, there are $5! \times 3!$ bytes are in fact the same byte if the ONEs and ZEROes are indistinct. Thus, $|B| = \frac{8!}{5! \times 3!} = 56$. Thus, $P(B) = \frac{56}{256} = \frac{7}{32}$.

- (b) Let A denote the event that the least significant bit (LSB) is a ZERO. What is $P(A|B)$? **Solution:** $P(A|B) = \frac{P(AB)}{P(B)}$. To calculate $P(AB)$ note that event AB is the set of outcomes in which the memory word has exactly 3 ZEROes with one ZERO in the LSB. Thus, the 7 non-LSB bits have exactly 5 ONEs and 2 ZEROs. Therefore, $|AB| = \frac{7!}{5! \times 2!} =$ 21 and therefore $P(AB) = \frac{21}{256}$ and $P(A|B) = \frac{3}{8}$.
- 2. [10+6+8 points] A 3-faced die is rolled twice. $\omega_1 \in \{1,2,3\}$ and $\omega_2 \in \{1,2,3\}$ are the outcomes of each roll. The random variable X takes values in the set $\{2\omega_1 + \omega_2\}$.
	- (a) Determine the set of values u_i that X can take and the probability mass function $P_X(u_i)$. Solution: The sample space

$$
\Omega = \{(\omega_1, \omega_2\} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}
$$

and $\{2\omega_1 + \omega_2\} = \{3, 4, 5, 5, 6, 7, 7, 8, 9\}$ Therefore, $P_X(3) = \frac{1}{9}$, $P_X(4) = \frac{1}{9}$, $P_X(5) = \frac{2}{9}$, $P_X(6) = \frac{1}{9}, P_X(7) = \frac{2}{9}, P_X(8) = \frac{1}{9}, P_X(9) = \frac{1}{9}.$

- (b) Calculate $E[X]$. **Solution:** $E[X] = (3 + 4 + 6 + 8 + 9) \times \frac{1}{9} + (5 + 7) \times \frac{2}{9} = \frac{18}{3}$ $\frac{18}{3}$.
- (c) Calculate Var (X) . Solution: $E[X^2] = (3^2 + 4^2 + 6^2 + 8^2 + 9^2) \times \frac{1}{9} + (5^2 + 7^2) \times \frac{2}{9} = \frac{354}{9}$ $rac{54}{9}$. Therefore $Var(X) = E[X^2] - (E[X])^2 = \frac{354 - 324}{9} = \frac{10}{3}$ $\frac{10}{3}$.
- 3. [8+10+4 points] Suppose 50% of total circulating quarter coins in the US are State Quarters (see the figure below for three examples of State Quarters). Suppose that the State Quarters of each State take 1% of the total circulating quarters. Therefore, randomly picking a circulating quarter, the probability that the quarter is an Illinois State (or any other state) Quarter is 1%, and the probability that the quarter is a State Quarter is 50%. (These percentages are made up for exam purposes only.) Bob is collecting the State Quarters by checking every quarter coin he receives in his daily life.
	- (a) What is the expected number of quarters that Bob needs to check to collect 50 Illinois State quarters?

Solution: Let X denote the number of quarters Bob needs to check to collect r Illinois State quarters. X follows a negative binomial distribution with parameters $r = 50$ and $p = 0.01$.

$$
E[X] = r/p = 50/0.01 = 5,000.
$$

Figure 1: Examples of state quarter coins

- (b) What is the expected number of quarters Bob needs to check to collect two quarters of different states? Present your answer in an irreducible fraction. **Solution:** Let Y denote the number of quarters Bob needs to check to collect two quarters of different states. Let Y_1 denote the number of quarters Bob needs to check to collect one State quarter. Let Y_2 denote the additional number of quarters Bob needs to check to collect another quarter of a different state. Y_1 follows a geometric distribution with parameter $p = 0.5$, and Y_2 follows a geometric distribution with parameter $p = 0.49$. $Y = Y_1 + Y_2$ $E[Y] = E[Y_1] + E[Y_2] = 1/0.5 + 1/0.49 = 198/49.$
- (c) What is the expected number of quarters that Bob needs to check to collect a set of state quarters of all 50 states? Present your answer with an integer. (Hint: $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \approx$ $ln(n)$ and $ln(50) \approx 3.91$

Solution: Let Z denote the number of quarters Bob needs to check to collect a set of state quarters of all 50 states, and $Z = Z_1 + Z_2 + ... + Z_{50}$, where Z_1 denotes the number of quarters Bob needs to check to collect one state quarter, Z_i denotes the additional number of quarters Bob needs to check to collect a state quarter of one of the remaining $50 - i + 1$ states for $2 \leq i \leq 50$. Z_i follows a geometric distribution with parameter $p_i = \frac{50 - i + 1}{100}$.

$$
E[Z] = E[Z_1] + E[Z_2] + \dots + E[Z_3]
$$

= $\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_{50}}$
= $\frac{100}{50} + \frac{100}{49} + \dots + \frac{100}{1}$
= $100 \times (\frac{1}{50} + \dots + \frac{1}{2} + \frac{1}{1})$
 $\approx 100 \times \ln(50) \approx 391$

- 4. [8+8 points] Suppose a random variable X is uniformly distributed on $\{2, 4, 6, 8, 10, ..., 2n\}$, and another random variable Y has a Poisson distribution with parameter λ .
	- (a) We observe $X = 10$. Find the ML estimate of n. **Solution:** Since X has a uniform distribution, $P(X = 10) = \frac{1}{n}$, where $2n \ge 10$. To maximize $P(X = 10)$, we have $n = 5$.
	- (b) We observe $Y = 5$. Find the ML estimate of λ . **Solution:** $P(Y = 5) = \frac{e^{-\lambda} \lambda^5}{5!}$. Differentiate with respect to λ , we obtain $\lambda = 5$.
- 5. $[12+6$ points] Suppose Z_1 , Z_2 , Z_3 are i.i.d. Bernoulli random variables with parameter $p = \frac{1}{2}$ $\frac{1}{2}$. The random variable $S = Z_2 Z_3$ if $Z_1 = 1$, and $S = Z_2 + Z_3$ if $Z_1 = 0$.
	- (a) Find $P(S=1)$.

Solution:

$$
P(S = 1) = P(Z_1 = 1, Z_2 = 1, Z_3 = 1) + P(Z_1 = 0, Z_2 = 1, Z_3 = 0)
$$

$$
+ P(Z_1 = 0, Z_2 = 0, Z_3 = 1) = \frac{3}{8}.
$$

(b) Find $P(Z_1 = 1|S = 1)$. Solution: $P(Z_1 = 1 | S = 1) = \frac{P(Z_1 = 1, Z_2 = 1, Z_3 = 1)}{P(S = 1)}$ 1 8 3 8 $=\frac{1}{2}$ $\frac{1}{3}$.