ECE 313 (Section G) Homework 10

Due Date: Wed, Apr 26, in the class

Write your name and NetID on top of all the pages. Show your work to get partial credit.

Covariance and Correlation

Problem 1 – Suppose n fair dice are independently rolled. Let:

$$X_k = \begin{cases} 1 & \text{if 1 shows on the k^{th} die} \\ 0 & \text{else} \end{cases} \qquad Y_k = \begin{cases} 1 & \text{if 2 shows on the k^{th} die} \\ 0 & \text{else} \end{cases}$$

Let $X = \sum_{k=1}^{n} X_k$, which is the number of one's showing, and $Y = \sum_{k=1}^{n} Y_k$, which is the number of two's showing. Note that if a histogram is made recording the number of occurrences of each of the six numbers, then X and Y are the heights of the first two entries in the histogram.

- a) What distribution best describes the random variables X_k and Y_k ?
- b) Find E/X_k and E/Y_k .
- c) Use $E[X_k]$ and $E[Y_k]$ to find E[X] and Var(X).
- d) Find $Cov(X_i, Y_j)$ if $1 \le i \le n$ and $1 \le j \le n$ (**Hint:** Are X_i , and Y_j independent when $i \ne j$? What if i = j?)
- e) Use $Cov(X_i, Y_i)$ to find Cov(X, Y).
- f) Find the correlation coefficient $\rho_{X,Y}$. Are X and Y positively correlated, uncorrelated, or negatively correlated?

Problem 2 – Consider two random variables *X* and *Y*:

- a) If Var(X + 2Y) = Var(X 2Y), are X and Y uncorrelated? Are they independent? Why?
- b) If Var(X) = Var(Y), are X and Y uncorrelated? Why?

Hypothesis Testing

Problem 3 – Given the following likelihood matrix, specify the ML and MAP decision rules and find $p_{false-alarm}$, p_{miss} , and p_e for both of them. Assume that: $\pi_0 = 0.3$.

	X = 0	X = 1	X = 2	X = 3	X = 4
	0.00				
$\overline{H_0}$	0.08	0.15	0.31	0.31	0.15

Problem 4 – We are interested in detecting Denial of Service (DOS) attacks to a Web server based on the incoming traffic that is observed at a given second.

- Suppose that usually the number of requests, X, arriving at the Web Server from one client in an interval of 1 second is Poisson distributed with parameter $\lambda = 3$
- In case of a DOS attack, an attacker sends a total of 100 malicious requests per second, from which X would successfully pass the firewall and arrive to the Web Server. Suppose the probability that a malicious request passes through the firewall and arrives to the server is p = 0.04.

A decision rule is needed to decide, based on observation of X, whether an attack occurred (hypothesis H_1) or not (hypothesis H_0).

- a) Write the conditional pmf of observation X given hypotheses H_0 .
- b) Write the conditional pmf of observation X given hypotheses H_1 . (**Hint:** What distribution best describes the number of malicious requests that successfully arrive to the Web Server?)
- c) Describe the ML decision rule in the form of likelihood ratio tests (LRT). (**Hint:** For which values of *X* an attack (H₁) is declared by the ML decision rule?)
- d) Describe the MAP decision rule in the form of likelihood ratio tests (LRT), under the assumption that receiving normal requests is a priori three times more likely than receiving attacks (i.e. $\frac{\pi_0}{\pi_1} = 2$).
- e) Find $p_{false-alarm}$, p_{miss} , and p_e for each of the ML and MAP decision rules.
- f) Compare the performance of the ML or MAP decision rules.