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Today’s Topics

• Reliability Evaluation Applications
– Another non series-parallel example
– Introducing N Modular Redundancy – Special Case of Triple 

Modular redundancy (TMR) 
• Random Variables: Discrete and Continuous
• Prob. Mass Function (pmf), Cumulative Distribution Function 

(CDF)

•Announcements:
– Homework 3  released Wednesday, Feb 15,
– In class group activity Wednesday as well  
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Non-Series Parallel System Example

B

A C D

E

F B (“ short ”) works

A E

F C
D

B (“ open ”) fails

B Working B Not Working 

Rsys =  RB P(system works | B works) + (1 - RB) {RD[1 - (1 - RARE)(1 - RFRC)]}
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Non-Series-Parallel-Systems (cont.)

A DE

B (“ short ”) works, C (“ short ”) works

F

A
D

B (“ short ”) works, C (“ open ”) fails

Reduction with B and C replaced

P(system works | B works) =  RC{RD[1 - (1 - RA)(1 - RF)]} + (1 - RC)(RARDRE)

Letting RA ....RF = Rm yields       Rsys = R6
m - 3R5

m + R4
m + 2R3

m

A C D

E

F B (“ short ”) works

B Working 
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Non-Series Parallel System Example

A Working 
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Non-Series Parallel System Example

A Not Working 



Iyer  - Lecture 7 ECE 313 - Fall 2016

Non-Series Parallel System Example
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Example

• Consider a binary communication channel transmitting coded 
words of n bits each. Assume that the probability of successful 
transmission of a single bit is p (and the probability of an error is 
q = 1-p), and the code is capable of correcting up to e (e >=0) 
errors. 

• For example, if no coding or parity checking is used, then e = 0. 
If a single error correcting Hamming code is used then e =1. 

• If we assume that the transmission of successive bits is 
independent, then the probability of successful word 
transmission is: 
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Sequence of Bernoulli Trials 
N-Modular Redundancy

• Consider a system with n components that requires m (£n) or 
more components  to function for the correct operation of the 
system (called m-out-of-n system). 

• If we let m=n, then we have a series system; if we let m = 1, 
then we have a system with parallel redundancy.

• Assume: n components are statistically identical and function 
independently of each other. 

• Let R denote the reliability  of a component ( and q = 1 – R) 
gives its unreliability), then the experiment of observing the 
status of n components can be thought of as a sequence of n 
Bernoulli trials with the probability of success equal R. 
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Bernoulli Trials  Example (cont.)

• Now the reliability of the system is:

• It is easy to verify that:
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Bernoulli Trials  
TMR System Example

• As special case of m-out-of-n system, consider a system with 
triple modular redundancy (TMR) i.e.  (a 3-out-of-2 system) two 
are required to be working for the system to function properly 
(i.e., n = 3 and m = 2). This is achieved by feeding the outputs of 
the three components into a majority voter.

R

R

R

Voter
OutputInput
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Bernoulli Trials  
TMR System Example (cont.)

• The reliability of TMR system is given by the expression:

• and thus Note that:

• Thus TMR increases reliability over the simplex system only if 
the simplex reliability is greater than 0.5; otherwise decreases 
reliability

• Note: the voter output corresponds to a majority; it is possible for 
two or more malfunctioning units to agree on an erroneous vote.
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Reliability of TMR vs. Simplex
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Reliability of TMR vs. Simplex
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TMR with Compensating Error

• In the computation of TMR reliability, we assumed that when two 
units have failed they both produce incorrect results and, hence 
after voting, the wrong answer will be produced by the TMR 
configuration. 

• In the case that two faulty units produce the opposite answers 
(one correct and the other incorrect) the overall result will be 
correct. 

• Assuming that the probability of such a compensating error is c, 
derive the reliability expression for the TMR configuration.
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TMR with Compensating Error

All Working 

Two Working 

None Working 

One Working 

Two Correct 
(Compensation)One Correct
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Random Variable

• Definition: Random Variable 
A random variable X on a sample space S is a function X: S ® 
Â that assigns a real number X(s) to each sample point s Î S.

Example: Consider  a random experiment  defined by a sequence of 
three Bernoulli trials. The sample space S consists of eight triples 
(where 1and 0 respectively denote success and a failure on the nth 
trail). The probability of successes , p, is equal 0.5.

Sample points

111
110
101
100
011
010
001
000

P(s)

0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125

X(s)

3
2
2
1
2
1
1
0

Note that two or more sample 
points might give the same value 
for X (i.e., X may not be 
a one-to-one function.), but that two 
different numbers in the range 
cannot be assigned to the same 
sample point (i.e., X is well 
defined function).
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Discrete/Continuous Random Variables

• The discrete random variables are either a finite or a countable 
number of possible values. 

• Random variables that take on a continuum of possible values 
are known as continuous random variables.

• Example: A random variable denoting the lifetime of a car, when 
the car’s lifetime is assumed to take on any value in some 
interval (a,b) is continuous.



Iyer  - Lecture 7 ECE 313 - Fall 2016

Random Variable (cont.)

• Event space
For a random variable  X and a real number x, we define the 
event Ax to be the subset of S consisting of all sample points s 
to which  the random variable X assigns the value x.
Ax = {s Î S | X(s) = x}; Note that: 

The collection of events Ax for all x defines an event space
• In the previous example the random variable defines four 

events:
A0 = {s Î S | X(s) = 0} = {(0, 0, 0)}
A1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
A2 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
A3= {(1, 1, 1)}

    
Ax = S

x∈ ℜ
U

Discrete random variable
The random variable which is either
finite or countable.
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• Let X denote the random variable that is defined as the sum of 
two fair dice; then

Random Variables Example 1

!
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• i.e., the random variable X can take on any integral value 
between two and twelve, and the probability that it takes on 
each value is given. 

• Since X must take on one of the values two through twelve, we 
must have:

(check from the previous equations).

Random Variables Example 1 (Cont’d)
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Random Variables Example 2

• Suppose that our experiment consists of tossing two fair coins. 
Letting Y denote the number of heads appearing, then

• Y is a random variable taking on one of the values 0, 1, 2 with 
respective probabilities:

4
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Random Variables Example 3

• Suppose that we toss a coin until the first head appears 
• Assume a probability p of coming up heads, on each toss. 
• Letting N ( a R.V) denote the number of flips required, and 

assume that the outcome of successive flips are independent, 
• N is a random variable taking on one of the values 1, 2, 3, . . . , 

with respective probabilities 
P{N =1} = P{H} = p,
P{N = 2} = P{(T,H )} = (1− p)p,
P{N = 3} = P{(T,T,H )} = (1− p)2 p,



P{N = n} = P{(T,T,....,T
n−1

   ,H )} = (1− p)n−1 p, n ≥1
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Random Variables Example 3 (Cont’d)

• As a check, note that 

P {N = n}
n=1

∞
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Random Variables Example 4

• Suppose that our experiment consists of seeing how long a 
commodity smart phone can operate before failing. 

• Suppose also that we are not primarily interested in the actual 
lifetime of the phone but only if the phone lasts at least two 
years. 

• We can define the random variable I by 

• If E denotes the event that the phone lasts two or more years, 
then the random variable I is known as the indicator random 
variable for event E. (Note that I equals 1 or 0 depending on 
whether or not E occurs.) 

I =
1, if the lifetime of battery is two or more years
0, otherwise

!
"
#

$#
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Random Variables Example 5 

• Suppose that independent trials, each of which results in any of 
m possible outcomes with respective probabilities p1, . . . , pm,

are continually performed. Let X denote the number of 
trials needed until each outcome has occurred at least once. 

• Rather than directly considering P{X = n} we will first determine 
P{X > n}, the probability that at least one of the outcomes has 
not yet occurred after n trials. Letting Ai denote the event that 
outcome i has not yet occurred after the first n trials, i = 1,...,m, 
then: 

pi =1i=1

m
∑

P{X > n} = P Ai
i=1

m


!

"
#

$

%
&

= P(Ai )
i=1

m

∑ − P(AiAj )
i< j
∑∑

+ P(AiAjAk )−....+ (−1)
m+1P(A1...Am )∑

i< j<k
∑∑
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Random Variables Example 5 (Cont’d)

• Now,           is the probability that each of the first n trials results 
in a non-i outcome, and so by independence 

• Similarly,             is the probability that the first n trials all result 
in a non-i and non-j outcome, and so 

• As all of the other probabilities are similar, we see that 

P(Ai ) = (1− pi )
n

P(AiAj ) = (1− pi − pj )
n

P{X > n} = (1− pi )
n − (1− pi − pj )

n

i< j
∑∑

i=1

m

∑

+ (1− pi − pj − pk )
n −...∑

i< j<k
∑∑

P(AiAj )

P(Ai )
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Random Variables Example 5 (Cont’d)

• Since 

• By using the algebraic identity:

• We see that:

P{X = n} = P{X > n−1}−P{X > n}

P{X = n} = pi (1− pi )
n−1 − (pi + pj )(1− pi − pj )

n−1

i< j
∑∑

i=1

m

∑

+ (pi + pj + pk )(1− pi − pj − pk )
n−1 −...∑

i< j<k
∑∑

(1− a)n−1 − (1− a)n = a(1− a)n−1
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Discrete/Continuous Random Variables

• So far the random variables of interest were either a finite or a 
countable number of possible values (discrete random 
variables). 

• Random variables can also take on a continuum of possible 
values (known as continuous random variables).

• Example: A random variable denoting the lifetime of a car, when 
the car’s lifetime is assumed to take on any value in some 
interval (a,b). 
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Discrete Random Variables:
Probability Mass Function (pmf)

• A random variable that can take on at most countable number of 
possible values is said to be discrete. 

• For a discrete random variable    , we define the probability 
mass function of      by:

• is positive for at most a countable number of values of    . 
i.e., if      must assume one of the values x1, x2, …, then

• Since take values xi:
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Cumulative Distribution Function

• The cumulative distribution function     can be expressed in 
terms of         by:

• Suppose       has a probability mass function given by

then the cumulative distribution function     of        is given by

F

X

å
£

=
aixall

ixpaF )()(

X

)(ap

F
6
1)3(,

3
1)2(,

2
1)1( === ppp

3
2

3
2
1
1

1

,
6
5

,
2
1
,0

)(
<
<

£
£
£
<

ï
ï
ï

î

ïï
ï

í

ì

=

a
a
a

a

aF



Iyer  - Lecture 7 ECE 313 - Fall 2016

Cumulative Distribution Function (CDF)

• The cumulative distribution function (cdf) (or distribution 
function)        of a random variable      is defined for any real 
number by

• denotes the probability that the random variable 
takes on a value that is less than or equal to   .  

)(×F X
,, ¥<<¥- bb }{)( bXPbF £=

)(bF X
b
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Cumulative Distribution Function (CDF)

• Some properties of cdf are:
i. is a non-decreasing function of b,
ii.
iii.

• Property (i) follows since for          the event               is contained in the 
event              , and so it must have a smaller probability.

• Properties (ii) and (iii) follow since      must take on some finite value.

• All probability questions about      can be answered in terms of cdf .       
For example:

i.e. calculate                            by first computing the probability that  
and then subtract from this the probability that                    .                   

F
)(bF

,1)()(lim =¥=+¥® FbFb
.0)()(lim =-¥=-¥® FbFb
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Cumulative Distribution Function

• The cumulative distribution function     can be expressed in 
terms of         by:

• Suppose       has a probability mass function given by

then the cumulative distribution function     of        is given by
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Review: Discrete Random Variables

• Discrete Random Variables:
– Probability mass function (pmf):

• Properties:

– Cumulative distribution function (CDF):

• A stair step function
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Discrete/Continuous Random Variables

• So far the random variables of interest were either a finite or a 
countable number of possible values (discrete random 
variables). 

• Random variables can also take on a continuum of possible 
values (known as continuous random variables).

• Example: A random variable denoting the lifetime of a car, when 
the car’s lifetime is assumed to take on any value in some 
interval (a,b). 
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Continuous Random Variables
• Random variables  whose set of possible values is uncountable

• X is a continuous random variable if there exists a nonnegative function 
f(x) defined for all real                     , having the property that for any set 
of B real numbers

• f(x) is called the probability density function of the random 
variable X

• The probability that X will be in B may be obtained by integrating 
the probability density function over the set B.  Since X must 
assume some value, f(x) must satisfy

ò
¥

¥-
=¥-¥Î= dxxfXP )()},({1

P{X ∈ B} = f (x)dx
B
∫

x ∈ (−∞,∞)
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Continuous Random Variables Cont’d
• All probability statements about X can be answered in terms of f(x)

e.g. letting B=[a,b], we obtain

• If we let a=b in the preceding, then  ?????

• The relationship between the cumulative distribution F(·) and the 
probability density f(·)

• Differentiating both sides of the preceding yields

)()( afaF
da
d

=

ò ¥-=-¥Î=
a

dxxfaXPaF )()},({)(

ò=££
b

a
dxxfbXaP )(}{



Iyer  - Lecture 7 ECE 313 - Fall 2016

Continuous Random Variables Cont’d
• All probability statements about X can be answered in terms of f(x)

e.g. letting B=[a,b], we obtain

• If we let a=b in the preceding, then

• This equation states that the probability that a continuous random 
variable will assume any particular value is zero

• The relationship between the cumulative distribution F(·) and the 
probability density f(·)

• Differentiating both sides of the preceding yields

)()( afaF
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Continuous Random Variables Cont’d

• That is, the density of the derivative of the cumulative distribution 
function.

• A somewhat more intuitive interpretation of the density function

when ε is small

• The probability that X will be contained in an interval of length ε
around the point a is approximately εf(a)
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Review: Continuous Random Variables

• Continuous Random Variables:
– Probability distribution function (pdf):

• Properties:

• All probability statements about X can be answered by f(x):

– Cumulative distribution function (CDF):

• Properties:
• A continuous function

P{X ∈ B} = f (x)dx
B
∫
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