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Today’s Topics

• Reliability Evaluation Applications
– series-parallel / non-series parallel systems
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Calculating the Probability of failure: 
Cloud Computing Example

• Providing a higher level of reliability and availability is one of the biggest 
challenges of Cloud computing

Google Insight for Search: Cloud Computing

Amazon
Microsoft
Google

Outage in:
Jul 08: Amazon S3
down 8.5h due to 

one single bitflip in 
Gossip message

Oct 09: MS Azure
down 22h due to 
malfunction in 
the hypervisor Feb 11: 40K Gmail 

Account down 4 
days due to a bug 

in a storage 
software update

Apr 11: Amazon EC2
US East down 4 days 

due to Network 
problem and 

replicas algorithm

2007 2008 2009 2010 2011

R. Iyer, Z. Kalbarczyk, and N. Nakka, “Dependable Computing: Design and Assessment,” 
Draft of forthcoming text, 2012
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Application to Reliability Evaluation
Series and Parallel Systems

• Consider the problem of computing reliability of so-called series-
parallel systems.

• A series system is one in which all components are so 
interrelated that the entire system will fail if any one of its 
components fails.

• A parallel system is one that will fail only if all its components 
fail.

• We will assume that failure events of components in a system 
are mutually independent.  Consider a series system of n
components.
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Application to Reliability Evaluation 
(cont.)

• For I=1,2,…,n, define events Ai=“Component i is functioning 
properly.” The reliability, Ri, of component i is defined as the 
probability that the component is functioning properly.  Then: 
Ri=P(Ai).

• By the assumption of series connections, the system reliability:
Rs = P

  = P(A1 A2 An )

  = P(A1 )P(A2 )P(An )

= Ri
i=1

n
∏ (2.1)

(“The system is functioning properly.”)
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Example of Effect of Complexity on 
Reliability

• This example demonstrates how quickly system reliability 
degrades with an increase in complexity.

• For example, if a system consists of five components in a series, 
each having a reliability of 0.970, then the system reliability is 
0.9705=0.859.

• If the system complexity is increased so that it contains ten 
similar components, its reliability is reduced 0.97010=0.738.

• Imagine what happens to system reliability when a large system 
such as a computer system consists of tens to hundreds of 
thousands of components.
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Increasing Reliability Using 
Redundancy

• One way to increase the reliability of a system is to use redundancy, i.e., to 
replicate components with small reliabilities.  This is called parallel 
redundancy.

• Consider a system consisting of n independent components in parallel;  the 
system fails to function only if n components have failed.

• Define event Ai=“The component i is functioning properly” and 
Ap=“The parallel system of n components is functioning properly.”
Also let Ri=P(Ai) and Rp=P(Ap). 
To establish a relation between Ap and the Ai’s, it is easier to consider the 
complementary events.  

Thus: “The parallel system has failed.”

=  “All n components have failed.”

• Therefore, by independence:

A p =

  = A 1  A 2 A n

  P(A p ) = P(A 1 A 2  A n ) = P(A 1 )P(A 2 )P(A n )
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Increasing Reliability Using 
Redundancy (cont.)

• Now let Fp=1-Rp be the unreliability of the parallel system, and similarly 
let Fi=1-Ri be the unreliability of component i.

• Then, since Ai and Ai are mutually exclusive and collectively exhaustive 
events, we have:

• And:

• Then:

• And:

1= P(S) = P(Ai ) + P(A i )

Fi = P(A i ) = 1− P(Ai )

Fp = P(A i ) = Fi
i−1

n
∏

Rp = 1− Fp = 1− (1− Ri
i=1

n
∏ )



Iyer  - Lecture 5 ECE 313 – Spring 2017

Product Law of Unreliabilities

• Thus, for parallel systems of n independent components, we 
have a product law of unreliabilities analogous to the product 
law of reliabilities of series systems.

• If we have a parallel system of five components, each with a 
reliability of 0.970, then the system reliability is increased to:

• However, we should be aware of the law of diminishing 
returns.

1− (1− 0.970)5 = 1− (0.03)5 = 1− 0.0000000243 = 0.9999999757
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Reliability Curve of a Parallel 
Redundant System
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Reliability of Series-Parallel Systems

• We can use formulas parallel and series systems in combination 
to compute the reliability of a system having both series and 
parallel parts (series-parallel systems).

• Consider a series-parallel system of n serial stages, where 
stage i consists of ni identical components in parallel.
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Reliability of Series-Parallel Systems 
(cont.)

• The reliability of each component of stage i is Ri.

• Assuming that all components are independent, Rsp :

Rsp = [1− (1− Ri )
ni

i=1

n
∏ ]
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Series-Parallel System Example

• Consider the series-parallel system shown in the diagram 
below, consisting of five stages, with n1=n2=n5=1, n3=3, n4=2, 
and R1=0.95, R2=0.99, R3=0.70, R4=0.75, and R5=0.9.

• Then: Rsp = 0.95 ⋅0.99 ⋅ (1− 0.3
3) ⋅ (1− 0.252 ) ⋅0.9 = 0.772

R1 R2

R3

R3

R3

R4

R4

R5
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Application of Bayes
A More Complex System: Example

• Consider evaluating the reliability R of the five-component 
system. The system is said to be functioning properly only if all 
the components on at least one path from point A to point B are 
functioning properly.

C1

C2

C3

C4

C5

A B
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Bayes’ Formula Example 3 (cont.)
• Define for i = 1, 2, …, 5 event Xi = “Component i is functioning 

properly”
– let Ri = reliability of component i = P(Xi)
– let X = “System is functioning properly
– let R = system reliability = P(X)

• Thus X is a union of four events

• These four events are not mutually exclusive. Therefore, we cannot 
directly use axiom (A3). Note, however, that we could use relation (Rd), 
which does apply to union of interesting events. But this is 
computationally tedious for a relatively long list of events. Instead, use 
the theorem of total probability, we have:

)()()()( 53524241 XXXXXXXXX =

)1)(|()|()()|()()|()( 22222222 RXXPRXXPXPXXPXPXXPXP −+=+=

P(X) = P(X∩ X2 ) + P(X∩ X2 )
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Bayes’ Formula Example 3 (cont.)

• Now to compute P(X|X2)observe that since component C2 is 
functioning,  the status of components C1 and C3 is irrelevant. 
The system is equivalent to two components C4 and C5 in 
parallel. Therefore we get:

• To compute P(X|X2), since C2 is known to have failed, the 
resulting system is a series-parallel one whose reliability is:

• Combining previous equations and substituting, we have:

)1)(1(1)|( 53412 RRRRXXP −−−=

P(x) = R = [1− (1− R4 )(1− R5 )]R2 + [1− (1− R1R4 )(1− R3R5 )](1− R2 )
= 1− R2 (1− R4 )(1− R5 ) − (1− R2 )(1− R1R4 )(1− R3R5 )

P(X | X2 = 1− (1− R4 )(1− R5 )
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Next Topics

• Bernoulli Trials

• TMR Systems
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Bernoulli Trials

• Physical situations of interest:

• 1. Observe n consecutive executions of an if statement, with 
success = “then clause is executed” and failure =”else clause 
is executed”

• 2.  Examine components produced on an assembly line, with 
success = “acceptable” and failure = “defective”

• 3. Transmit binary digits through a communication channel, with 
success = “digit received correctly” and failure = “digit received 
incorrectly”
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Bernoulli Trials  (cont.)

4. Consider a time-sharing computer system that allocates a finite 
quantum (or time slice) to a job scheduled for processor service. 
Observe n time-slice terminations, with success = “job has 
completed processing” and failure = “job still requires 
processing and joins the tail end of the ready queue of 
processes

CPU

Job completionJob arrival

Ready queue
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Bernoulli Trials (Cont’d)

• Consider a random experiment that has two possible outcomes,. 
Let the probabilities of the two outcomes be p and q, 
respectively, with p + q = 1.

• Now consider the compound experiment:  A sequence of n 
independent  repetitions of this experiment. Such a sequence: is 
known as a sequence of Bernoulli trials.
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Bernoulli Trials  (cont.)

• Let 0 denote failure and 1 denote success. Let Sn be the sample 
space of an experiment involving n Bernoulli trials, defined by:
– S1 = {0, 1}, S2 = {(0, 0), (0, 1), (1, 0), (1, 1)}
– Sn = {2n n-tuples of 0’s and 1’s}.

• The probability assignment over the sample space S1 is already 
specified: P(0) = q £ 0, P(1) = p £ 0, and p + q = 1. We wish to 
assign probabilities to the points in Sn.

• Let Ai = “Success on trial i” and Ai = “Failure on trial i” then 
P(Ai) = p and P(Ai) = q.
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Bernoulli Trials  (cont.)

• Consider s an element of Sn such that s = (1, 1, …, 1, 0, 0, …, 0) 
[k 1’s and  (n-k) 0’s]. Then the elementary event  {s} can be 
written:
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Bernoulli Trials  (cont.)

• Therefore:

• Similarly, any sample point with k 1’s and (n-k) 0’s is assigned 
probability pkqn-k. Noting that there are      such points, the 
probability of obtaining exactly k successes in n trials is :

• Verify that expression for P(s) is a legitimate probability 
assignment over the sample space Sn since 

by the binomial theorem. 
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Example

• Consider a binary communication channel transmitting coded 
words of n bits each. Assume that the probability of successful 
transmission of a single bit is p (and the probability of an error is 
q = 1-p), and the code is capable of correcting up to e (e >=0) 
errors. 

• For example, if no coding or parity checking is used, then e = 0. 
If a single error correcting Hamming code is used then e =1. 

• If we assume that the transmission of successive bits is 
independent, then the probability of successful word 
transmission is: 
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Bernoulli Trials  Example

• Consider a system with n components that requires m (£n) or 
more components  to function for the correct operation of the 
system (called m-out-of-n system). 

• If we let m=n, then we have a series system; if we let m = 1, 
then we have a system with parallel redundancy.

• Assume: n components are statistically identical and function 
independently of each other. 

• Let R denote the reliability  of a component ( and q = 1 - R gives 
its unreliability), then the experiment of observing the status of n 
components can be thought of as a sequence of n Bernoulli 
trials with the probability of success equal R. 
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Bernoulli Trials  Example (cont.)

• Now the reliability of the system is:

• It is easy to verify that:

{ }
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Bernoulli Trials  
TMR System Example

• As special case of m-out-of-n system, consider a system with 
triple modular redundancy (TMR). In such a system there are 
three components, two of which are required to be in working 
order for the system  to function properly (i.e., n = 3 and m = 2). 
This is achieved by feeding the outputs of the three components 
into a majority voter.

R

R

R

Voter
OutputInput
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Bernoulli Trials  
TMR System Example (cont.)

• The reliability of TMR system is given by the expression:

• and thus Note that:

• Thus TMR increases reliability over the simplex system only if 
the simplex reliability is greater than 0.5; otherwise decreases 
reliability

• Note: the voter output corresponds to a majority; it is possible for 
two or more malfunctioning units to agree on an erroneous vote.
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Reliability of TMR vs. Simplex
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Reliability of TMR vs. Simplex
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Random Variable

• Definition: Random Variable 
A random variable X on a sample space S is a function X: S ® 
Â that assigns a real number X(s) to each sample point s Î S.

Example: Consider  a random experiment  defined by a sequence of 
three Bernoulli trials. The sample space S consists of eight triples 
(where 1and 0 respectively denote success and a failure on the nth 
trail). The probability of successes , p, is equal 0.5.

Sample points

111
110
101
100
011
010
001
000

P(s)

0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125

X(s)

3
2
2
1
2
1
1
0

Note that two or more sample 
points might give the same value 
for X (i.e., X may not be 
a one-to-one function.), but that two 
different numbers in the range 
cannot be assigned to the same 
sample point (i.e., X is well 
defined function).
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Random Variable (cont.)

• Event space
For a random variable  X and a real number x, we define the 
event Ax to be the subset of S consisting of all sample points s 
to which  the random variable X assigns the value x.
Ax = {s Î S | X(s) = x}; Note that: 

The collection of events Ax for all x defines an event space
• In the previous example the random variable defines four 

events:
A0 = {s Î S | X(s) = 0} = {(0, 0, 0)}
A1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
A2 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
A3= {(1, 1, 1)}

    
Ax = S

x∈ ℜ
U

Discrete random variable
The random variable which is either
finite or countable.
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Probability Mass Function
• Probability mass function (pmf) or the discrete density function of the 

random variable X  pX(x) gives: 
the probability that  the value  of the random variable  X obtained on a 

performance of the experiment is equal to x.

• Properties of the pmf:
(p1) 0 £ pX(x) £ 1 for all x Œ¬  ; (since pX(x) is a probability)
(p2) (since the random variable assigns some value x Œ¬ to 

each sample point s Œ S)
(p3) for a discrete random variable X, the set {x| pX(x) ≠ 0} is a finite or countably  

infinite subset of real numbers. Let denote this set by {x1, x2,...}. Then the 
property (p2) can be restated as:

  
pX (x)= P(X = x)= P(s)

X(s)=x
∑

  
pX (x)= 1

x∈ℜ
∑

  
pX (xi )=1

i
∑
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Probability Mass Function
Examples

• For the previous example we can easily obtain pX(x) 
pX(0) = 0.125
pX(1) = 0.375
pX(2) = 0.375
pX(3) = 0.125

• For the example of a computer system with five tape drives, and 
defining the random variable X = “the number of available tape 
drives” we have:

• pX(0) = 1/32, pX(1) = 5/32, pX(2) = 10/32
pX(3) = 10/32, pX(4) = 5/32, pX(5) = 1/32


