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Today’s Topics & Announcements
• Basic Probability Concepts

– Events and Sample Space
– Algebra of Events
– Probability Axioms 
– Basic steps for solving problems
– Combinatorial problems:

• Permutations with replacement
• Permutations without replacement
• Combinations

• Announcements:
– Homework 1 will be posted on Jan 25th, due Feb 1st.
– A full lecture schedule including the topics covered and reading 

for each lecture is on the class website
– First in-class activity on Wednesday Jan 25
– Mini Project 1 will be posted Feb 1st

– Please visit Piazza for asking questions and recent updates.
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Basic Steps to Solving Problems

• Identify the sample space S
– The sample space S must be chosen so that all its elements are mutually 

exclusive and collectively exhaustive, I.e., no two elements can occur 
simultaneously and one element must occur on any trial.

• Assign probabilities to the elements in S
– This assumption must be consistent with the axioms A1 through A3

• Identify the events of interests
– The events are described by statements and need to be recast as subsets of 

the sample space
• Compute desired probabilities

– Calculate the probabilities of the events of interest using axioms and any 
derived laws

• Develop the Insight about the system/experiment
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Basic Concepts: 
Random Experiment, Sample Space, 

• Random experiment is an experiment the outcome of which is 
not certain

• Sample Space (S) is the totality of the possible outcomes of a 
random experiment 
– in general  if a system has n component  there are 2n possible outcomes, 

each of which can be regarded  as a point in  an n-dimensional sample 
space

• Discrete (countable) sample space is a sample space which is 
either
– finite, i.e., the set of all possible outcomes of the experiment is finite or
– countably infinite, i.e.,  the set of all outcomes can be put into a one-to-one 

correspondence with the natural numbers
• Continuous sample space is a sample space for which all 

elements constitute a continuum, such as all the points on a line, 
all the points in a plane
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Events

• An event is a collection of certain sample points, i.e., a subset of 
the sample space

• An event is defined as a statement  whose truth or falsity is 
determined  after the experiment

• The set of all outcomes for which the statement is true defines 
the subset  of the sample space corresponding  to the event
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Events (cont.)

• Elementary event is the event {s} consisting of a single sample 
point

• Bringing the Definitions together

– E is an event defined in the sample space S; E is a subset of S

– Outcome of  a specific “trial” is an element {s}

– “s” is an element in E ==> “event E has occurred”

– Note “s” may be an element in multiple events (i.e., only one outcome of 
the experiment but many events may occur)

• Universal event is the entire sample space  S 

• The null set Æ is a null or impossible event  

SE
s
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Algebra of Events

• Consider an example of a computer system with five identical 
processors. 

• Let a random experiment consists of checking the system to see 
how many CPUs are currently available.

• A CPU is in one of two states : busy (0) and available (1).

• The sample space S has 25 = 32 sample points
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Algebra of Events (cont.)
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Algebra of Events (cont.)

• Let the events E1and E2 be defined as follows: 

E1 - “At least four CPUs are available” - is given by: 

E1 = {(0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), 
(1, 1, 1, 1, 0), (1, 1, 1, 1, 1)}= {s15, s23, s 27, s29, s30, s31}

E1 (complement) = S - E1 = {all points not in E1}

E1 = {so thro s14, s16 thro s22, s24 thro s26, s28}

E2 - “CPU 1 is  available” - is given by:

E2 = {s16 thro s31}
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Algebra of Events (cont.)

• The intersection E3 of E1 and E2 is given by:

E3 = E1 Ç E2 = {s Î S |s is an element of both E1 and E2} 

= {s Î S |s Î E1 and s Î E2} = { s23, s 27, s29, s30 , s31}

• The union E4 of E1 and E2 is given by:

E4 = E1 È E2

= {s Î S |either s Î E1 or s Î E2 or both} 

= {s15 through s31}

E1

E2

E3

E4
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Algebra of Events (cont.)

• In general:  |E4| = |E1 È E2| £ |E1| + |E2| 

where |A| = the number of elements in the set (Cardinality)

• Mutually exclusive or disjoint events are two events for which 
A Ç B = Æ

• Definition of union and intersection extend to any finite number 
of sets

  
Ei = E1 ∪ E2 ∪ E3 ∪ ...∪ En

i=1

n
U

  
Ei

i=1

n
I = E1 ∩ E2 ∩ E3 ∩ ...∩ En

s is an element in E1 or E2…….

s is an element in E1 & E2 &…….
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Algebra of Events 
Laws or Axioms

• A, B, C are arbitrary sets (or events), S is the universal set or event
• (E1) Commutative laws:

AÈ B = B È A, A Ç B = B Ç A 
• (E2) Associative laws:

AÈ (B È C) = (AÈ B) È C , A Ç (B Ç C) = (A Ç B) Ç C 
• (E3) Distributive laws:

AÈ (B Ç C) = (AÈ B) Ç (AÈ C) ,     A Ç (B È C) = (A Ç B) È (A Ç C)
• (E4) Identity laws:

A È Æ = A, A Ç S = A 
• (E5) Complementation laws:

A È = S, A Ç = ÆA A
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Algebra of Events 
Useful Relations

• (R1) Idempotent laws:
A È A = A, A Ç A = A 

• (R2) Domination laws:
A È S = S, A Ç Æ = Æ

• (R3) Absorption laws:
A Ç (A È B) = A , A È (A Ç B) = A 

• (R4) DeMorgan’s laws:

• (R5)

• (R6) AÈ (     Ç B) = AÈ B

  (A∪ B)= A∩ B   (A∩ B)= A∪ B

A)A( =

A
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Algebra of Events (cont.)

• A list of events A1, A2, …, An is said to be 
– composed of mutually exclusive events iff:

(intuitively: a list has mutually exclusive events if no point in the sample space  is 
included in more than one event in the list)

– collectively exhaustive iff:
A1 È A2 È … È An= S

(each point in the sample space is included in at least one event in the list )

Ai ∩ Aj =
Ai                 if i =  j

                       otherwise
" 
# 
$ Æ
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Probability Axioms

• Let S be a sample space of a random experiment and P(A) be 
the probability of the event A

• The probability function P(.) must satisfy the three following 
axioms:

• (A1) For any event A, P(A)  ³ 0
(probabilities are nonnegative real numbers)

• (A2) P(S) = 1
(probability of a certain event, an event that must happen is 
equal 1)

• (A3) P(A È B) = P(A) + P(B), whenever A and B are mutually 
exclusive events, i.e., A Ç B = Æ
(probability function must be additive)
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Probability Axioms (cont.)

To deal with infinite sample space the axiom (A3) needs to be 
modified:

• (A3’) For any countable  sequence of events A1, A2, …, An …, 
that are mutually exclusive (that is Aj Ç Ak = Æ whenever j ¹ k)

• The conventional probability theory follows from the three 
axioms (A1 through A3’) of probability measure and the five 
axioms (E1 through E5) of the algebra of events.

    
P( An)= P(An)n=1

∞

∑
n=1

∞

U
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Probability Axioms 
Useful Relationships

• (Ra) For any event A, P(    ) = 1 - P(A)
• (Rb) If Æ is the impossible event, then P(Æ) = 0
• (Rc) If A and B are any events, not necessarily mutually 

exclusive, then
P (A È B)  = P(A) + P(B) - P (A Ç B) 

• (Rd)(generalization of Rc) If A1, A2, …, An are any events, then

where the successive sums are over all possible events, pairs of 
events, triples of events, and so on. 
(Can prove this relation by induction (see class web site))

A

  

P( Ai ) = P(A1 ∪ A2 ∪ ...∪ An
i=1

n
U ) = P(Ai )

i
∑ − P(Ai ∩ Aj )

1≤i< j≤n
∑

+ P(Ai ∩ Aj ∩ Ak ) +
1≤i< j<k≤n
∑ ...+ (−1)n−1P(A1 ∩ A2 ∩ ...∩ An )
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Probability Axioms (cont.) 
To avoid mathematical difficulties following definitions are introduced 

• “Class of events” (F) defines a particular class of subsets of S  
that is measurable 

• F is closed under countable unions as well as under 
complementation and called a s-field of subsets of S

• Now probability space or probability system is defined as a triple 
(S, F, P) where:
– S is a sample space
– F is a s-field of subsets of S which includes S
– P is probability measure of F

• P is a function with domain F and range [0, 1], which satisfies axioms A1, 
A2 and A3’

• P assigns a number between [0, 1] to any event in F
• In general, F does not include all possible subsets of S and the subsets 

(events) included in F are called measurable
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What Have We Gained by 
Defining the Axioms?

• The axioms ensure the same rules apply no matter how we 
assign probabilities, initially.

• Does not require that all subsets of S be “events”
– Axiom 1 says: For all “events”, A 0 ≤ P(A) ≤ 1

if A is not an event, then we don’t assign a probability to it.
• Restrictions

– S is always an event
– If A is an event, A is also an event.
– Subsets A1, A2 …. An are events, their union and intersections are also 

events.
– A collection of events which satisfies the 3 axioms is called F or s Field.
– s Field contains S and is closed under complementations, countable 

unions, and intersections.
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Elements of Sample Space

• The outcomes of an experiment
• Each element is a point in the sample space (of one or more 

dimensions)
• Examples

1-dimensional sample space:
A single component with two states (working is represented by 1; failed is 
represented by 0)

Represented by one variable x=(0,1)
2-dimensional sample space:

A system of two components x1,x2

The status of the system (x1,x2):
(0,0) (0,1) (1,0) (1,1)

0 1

x1

x2

0,1 1,1

1,00,0



Iyer  - Lecture 2 ECE 313 – Spring 2017

Elements of Sample Space (cont.)

3-dimensional sample space (representing the workload on a system):
CPU usage (normalized 0,1)

Memory usage (normalized 0,1)

I/O rate (normalized 0,1)

(0,0.9,0)

0.6

0.5

1.0

1.0

1.0

0.6
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Overview

• Summarizing:
– A1 For any event A  P(A) ≥ 0
– A2 P(S) = 1 (Prob of a certain event)
– A3 P(A È B) = P(A) + P(B)

A & B are mutually exclusive

A Ç B = Ø

• Next:
– Basic steps in problem solving
– Combinatorial methods
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Basic Steps to Solving Problems

• Identify the sample space S
– The sample space S must be chosen so that all its elements are mutually 

exclusive and collectively exhaustive, I.e., no two elements can occur 
simultaneously and one element must occur on any trial.

• Assign probabilities to the elements in S
– This assumption must be consistent with the axioms A1 through A3

• Identify the events of interests
– The events are described by statements and need to be recast as subsets of 

the sample space
• Compute desired probabilities

– Calculate the probabilities of the events of interest using axioms and any 
derived laws

• Develop the Insight about the system/experiment
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Examples

• Consider a wireless cell with five channels

• Step 1. A sample space consists of 32 points, each represented by 
a 5-tuple of 0’s and 1’s (0 = busy; 1 = available)

• Step 2. We assume that each sample point is equally likely and 
consequently we assign a probability of 1/32 to each point 
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Examples (Cont.)

• Step 3. Assume that we need to determine the probability that a call 
is not blocked, given that a conference call needs at least three 
channels for its execution. The event E of interests, then, is “Three 
or more channels  are available”

• E = {s7, s 11, s13, s14 , s15, s19, s21, s22, s23, s 25, s26, s27, s 28, s29, s30 , 
s31}

• Step 4. Event E can be expressed as a union of mutually exclusive 
events. The probability of these elementary events is 1/32 thus:

  
P(E)= P(si )

siÎ E
å = 12
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Examples (Cont.)

• A computer’s physical memory space can be divided into 
several fixed-sized contiguous blocks, called memory pages. 
Some x86 processors can support pages of different sizes. 
Assume that an Intel 64-bit processor supports three page types 
of sizes 4KB, 4MB, and 1GB. Two pages are selected from the 
processor memory at random and are examined to see if they 
are of different sizes or not.

Answer:
• An event in this experiment consists of a draw which has a pair 

of memory pages, (e.g. {4K,1G}). Total number of such events is 
(3×3) = 9. (The first draw can be performed in three different 
ways and so is the second draw – sampling with replacement) 
Then the sample space would be 9.
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Combinatorial Problems
• We are often concerned with selecting some number of objects 

from a total
– Defects
– Allocating processors for scheduling
– Performance measurement

• Sample Space consisting of a finite number (n) of points 
(elements, sample points, and outcomes

• For any event E, If we assume that all si are equally likely:  P(si) 
= pi= = 1/n
P(E) = # pts in E / # pts in S

P(si ) = pi

pi
i=1

n
å = 1
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Combinatorial Problems

• In the special case when S = {s1, …, sn} and P(si) = pi = 1/n

• If the event E consists of k sample points, then

n
k

outcomes total
outcomes  favorable

Sin  points ofnumber 
Ein  points ofnumber P(E) ===
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Example 1
• Consider the following if-statement in a program:

if B then s1 else s2

• In random experimental “observing” of two successive executions of the if-
statement, the sample space is:

• On the basis of experimental evidence:

• The events of interest are:
E1=“At least one execution of the statement s1.”
E2=“Statement s2 is executed the first time.”

• It is easy to see that:

S ={(s1,s1),(s1, s2 ),(s2 ,s1), (s2 ,s2 )}
={t1, t2, t3, t4}

P(t1) = 0.34,P(t2 ) = 0.26,P(t3) = 0.26,P(t4 )= 0.14

E1 = {t1,t2 , t3}
E2 = (t3, t4}
P(E1 ) = P(t1) + P(t2 )+ P(t3 ) = 0.86
P(E2 ) = P(t3 )+ P(t4 ) = 0.4
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Example 2

• A group of four integrated-circuit (IC) chips consists of two good 
chips, labeled g1 and g2, and two defective chips, labeled d1 and 
d2.  If three chips are selected at random from this group, what 
is the probability of the event:

E=“Two of the three selected chips are defective.”

S=[g1,g2,d1][g1,g2,d2][g1,d1,d2][g2,d1,d2]
under the equi-probable assumption, 

P(E) = 2/4= 1/2
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Permutations with Replacement
• Ordered samples of size k, with replacement (permutations with 

replacement) P(n, k)

gives the number of ways we can select k objects among n objects 
where order is important  and when the same object is allowed to be 
repeated any number of times; the required number is nk

• Example: Find the probability that some randomly chosen k-digit 
decimal number is a valid k-digit octal number. 

The sample space is S = {(x1, x2,  … xk) | x1, Î {0, 1, 2, …, 9}}
The events of interests is E = {(x1, x2,  … xk) | x1, Î {0, 1, 2, …, 7}}

|S| = 10k and |E| = 8k ----> P(E) = |E| / |S| = 8k  / 10k
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Permutations without Replacement
• Ordered Samples of size k, without replacement (permutations 

without replacement)
• Counts the number of ordered sequences  without repetition of 

the same element(s); the number is given by:

• Example: Find the probability that a randomly chosen three-
letter sequence will not have any repeat letters.
Let I = {a, b, …, z} be the alphabet of 26 letters
S = {(a, b, g) | a Î I, b Î I, g Î I}
E = {(a, b, g) | a Î I, b Î I, g Î I, a ¹ b, b ¹ g, a ¹ g}

|E| = P(26, 3) = 15,600;  |S| = 263 =17,576 
P(E) = 15,600 / 17,576 = 0.8876

k)!(n
n!1)k1)....(nn(n
-

=+-- k = 1, 2, …, n
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Combinations
• Unordered sample of size k, without replacement (combinations)

gives the number of unordered sets of distinct elements; the 
number is

• Example: If a box contains 75 good IC chips and 25 defective 
chips, and 12 chips are selected at random, find the probability 
that at least one chip is defective.

• The event of interest is E = “At least one chip is defective”; we 
use a complementary event E’ = “No chip is defective”  

|E’| = |S| =

P(E’) = |E’| / |S| = (75! * 88!) / (63! * 100!)  and P(E) = 1 - P(E’)

  
n
k
æ 

è 
ç 
ö 

ø 
÷ =

n!
k!(n- k)!

100
12

æ 

è 
ç 

ö 

ø 
÷ 

75
12
æ 

è 
ç 

ö 

ø 
÷ 
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Binomial Theorem

• The values are called binomial coefficients 
Binomial Theorem:

Combinatorial Proof of the Binomial Theorem: 
• Consider the product (x1 + y1)(x2 + y2)···(xn + yn)
• Its expansion consists of the sum of 2n terms, each term being the product of n 

factors. Furthermore, each of the 2n terms in the sum will contain as a factor 
either xi or yi for each i = 1,2,...,n. 

• Now, how many of the 2n terms in the sum will have k of the xi’s and (n−k) of 
the yi’s as factors? 

• As each term consisting of k of the x ’s and (n − k) of the y ’s corresponds to a 
choice of a group of k from the n values x1,x2,...,xn, there are such 

terms.

n
k

!

"
#

$

%
&

(x + y)n = n
k

!

"
#

$

%
&xkyn−k

k=0

n

∑

n
k

!

"
#

$

%
&



Iyer  - Lecture 2 ECE 313 – Spring 2017

Example 3: Selecting your favorite Apps

• Suppose we have 100 different Apps in the AppStore.  In each 
of the following cases, what are the number of possible 
outcomes?

a. We ask 3 different students about their favorite App. 

b. We ask one student to give a ranking of the best 3 Apps that the 
student has used.

c. We ask one student to pick 3 of her/his favorite App to 
recommend
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Example 3 - Solution

a. Permutations with replacement: 
– (100)3 = 1,000,000

b. Permutations without replacement:  
– 100×99×98 = 100! / (100-3)! = 100! / 97! = 970,200

c. Combinations: 
– = 100! / (3! 97!) = 161,700100

3

!

"
#

$

%
&
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Example 4:  Picking the “right” Shoe(s)

• A bag contains n pairs of shoes in distinct styles and sizes. You 
pick two shoes at random from the bag. Note that this is 
sampling without replacement. 
a) What is the probability that you get a pair of matching shoes? 
b) What is the probability of getting one left shoe and one right shoe? 

• Suppose now that n ≥ 2 and that you choose 3 shoes at random 
from the bag. 
c) What is the probability that you have a pair of matching shoes 
among the three that you have picked? 
d) What is the probability that you picked at least one left shoe and at 
least one right shoe? 
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Example 2 - Solution

a. Consider pairs of shoes as being unordered, that is, it does not 
matter which shoe of the pair is picked first. There are        
pairs in total and among these n are matching thus the 
probability is:

b. To get one left shoe and one right shoe, we need the second 
shoe to be of the opposite type of the first shoe. After picking 
the first shoe, among the 2n − 1 remaining shoes, n are of the 
opposite type. Thus, the probability of getting one left and one 
right shoe is n/ (2n − 1). 

2n
2

!

"
#

$

%
&

n
2n
2

!

"
#

$

%
&

=
n

2n(2n−1) / 2
=

1
2n−1
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Example 2 - Solution

c. There are n(2n − 2) unordered triples including a matching pair, 
among the           possible triples. Thus, the answer is:

d. There are            all-left or all-right triples. Thus the probability 
of a mixed triple is:

2n
3

!

"
#

$

%
&

n(2n− 2)
2n
3

"

#
$

%

&
'

=
n(2n− 2)

2n(2n−1)(2n− 2) / 6
=

3
2n−1

2. n
3

!

"
#

$

%
&

1−
2 n

3

"

#
$

%

&
'

2n
3

"

#
$

%

&
'

=1− n(n−1)(n− 2) / 3
2n(2n−1)(2n− 2) / 6

=1− (n− 2)
2(2n−1)

=
3n
4n− 2
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Example 3

• Assume that you have five electrons and three orbits. In how 
many ways can you distribute the electrons into orbits so that no 
orbit contains more than two electrons? (The ordering of 
electrons on each orbit is not important).
– Assuming that the electrons are identical: 

= 

– Assuming that the electrons are distinguishable (not identical): 

≠

1 2

3

4 5

2 5

1

3 4

1 2

3

4 5

2 5

1

3 4
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Example 3 - Solution

• Assuming that the electrons are identical:
– There are 3 different ways to assign 5 identical electrons to 3 different

orbits. We can show it as a sequence of number of electrons assigned
to each orbit:

(Orbit 1, Orbit 2, Orbit 3)   =  (1, 2, 2) or (2, 1, 2) or (2, 2, 1)

• Assuming that the electrons are distinguishable (not identical):
– If the electrons are distinguishable, there are 3 different ways to assign 

the 5 electrons to 3 orbits and in each case we have 30 ways to select 
the electrons, so in total there are 90 different ways:

• For case (1,2,2): = 30

• For case (2,1,2): = 30

• For case (2,2,1): = 30

5
1

!

"
#

$

%
& 4
2

!

"
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$

%
& 2
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"
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"
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%
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Example 4

• The following for loop is executed in a program. p is a variable 
that can be either TRUE or FALSE each time through the loop, 
A and B are statements that can be executed. In how many 
ways, exactly 3 ‘A’s can occur?
for (int i = 0; i < 32; i++)
{

if (p == TRUE)
A;

else
B;

}

• Answer: !"
!


