ECE 313: Exam II

Wednesday, April 13, 2016
7:00 p.m. - 8:15 p.m.
Aa-Hs in DCL 1320,
Ht-Lf in ECEB 1013,
Lg-Np in ECEB 1015,
Nq-Zz in ECEB 1002

1. [$\mathbf{1 0}$ points] Consider the CDF in the figure below.

Carefully provide numerical answers for the following; partial credit will not be assigned for incorrect answers.
(a) Obtain $P\{0.5<X \leq 1\}$.

Solution: Recalling that $F_{X}(c)=P\{X \leq c\}$, one obtains
$P\{0.5<X \leq 1\}=F_{X}(1)-F_{X}(0.5)=0 . \overline{7} 5-0.25=0.50$.
(b) Obtain $P\{0.5 \leq X<1\}$.

Solution: $P\{0.5 \leq X<1\}=F_{X}\left(1^{-}\right)-F_{X}\left(0.5^{-}\right)=0.5-0.25=0.25$.
2. [20 points] An amplifier has gain $A=g R$ where g, the transconductance, is a positive constant, and R, the load resistance, is uniformly distributed in the interval $[9,11]$.
(a) Determine $E[A]$ and $\operatorname{Var}(A)$ in terms of g.

Solution: $E[A]=g E[R]=g \frac{(11+9)}{2}=10 g, \operatorname{Var}(A)=g^{2} \operatorname{Var}(R)=g^{2} \frac{(11-9)^{2}}{12}=\frac{g^{2}}{3}$.
(b) Determine the minimum value of g that would ensure that $P\{A \geq 10\} \geq 0.8$, i.e., at least 80% of the amplifiers have a gain of 10 or more.
Solution: Ensuring $P\{A \geq 10\} \geq 0.8$ is the same as ensuring $P\{g R \geq 10\} \geq 0.8$, or equivalently, $P\left\{R \geq \frac{10}{g}\right\} \geq 0.8$. We want the minimum g, so we solve $P\left\{R \geq \frac{10}{g}\right\}=0.8$ for g. Since R is uniformly distributed over [9,11], this requires $\frac{10}{g} \in[9,11]$ so that $P\left\{R \geq \frac{10}{g}\right\}=\left(11-\frac{10}{g}\right) / 2$. Solving $\left(11-\frac{10}{g}\right) / 2=0.8$ yields $g=10 / 9.4=50 / 47$.
3. [18 points] The three parts of this problem are unrelated.
(a) Let X be Gaussian with mean 1 and variance 4. Express $P\left\{(X-1)^{2}<16\right\}$ in terms of the Φ function.
Solution: $P\left\{(X-1)^{2}<16\right\}=P\{-4<X-1<4\}=P\left\{\frac{-4}{2}<\frac{X-1}{2}<\frac{4}{2}\right\}=$ $\Phi(2)-\Phi(-2)$, because $\frac{X-1}{2} \sim N(0,1)$.
(b) Let $X \sim \operatorname{Binomial}(160,1 / 4)$. Use the Gaussian approximation with continuity correction to approximate $P\{45 \leq X \leq 50\}$ in terms of the Φ function.
Solution: Note that X has mean $n p=40$ and variance $n p(1-p)=30$, and under the Gaussian approximation with the continuity correction, $P\{45 \leq X \leq 50\}$
$=P\{44.5 \leq X \leq 50.5\}=P\left\{\frac{4.5}{\sqrt{30}} \leq \frac{X-40}{\sqrt{30}} \leq \frac{10.5}{\sqrt{30}}\right\} \approx \Phi\left(\frac{10.5}{\sqrt{30}}\right)-\Phi\left(\frac{4.5}{\sqrt{30}}\right)$.
(c) Let X have pdf $f_{X}(u)=\frac{u^{2}}{3}$ for $u \in(-2,1)$ and zero else. Let $Y=-2 X$ and obtain the pdf of $Y, f_{Y}(v)$ for all v.
Solution: Recall that if $Y=a X+b$, then $f_{Y}(v)=\frac{1}{|a|} f_{X}\left(\frac{v-b}{a}\right)$ (this also follows from the three step procedure for finding the pdf of a function of a random variable), hence in this case $f_{Y}(v)=\frac{1}{|-2|} f_{X}\left(\frac{v}{-2}\right)=\frac{1}{2} f_{X}\left(-\frac{v}{2}\right)=\frac{1}{6}\left(-\frac{v}{2}\right)^{2}=\frac{v^{2}}{24}$. The support of f_{Y} is obtained by realizing the transformation of the endpoints of the support of f_{X}, which yields the left endpoint $u=-2$ transformed into $v=4$ and the right endpoint $u=1$ transformed into $v=-2$. Hence, $f_{Y}(v)=\frac{v^{2}}{24}$ for $v \in(-2,4)$ and zero else.
4. [18 points] Suppose the times of tweets sent out by a certain celebrity form a Poisson process, with mean rate λ tweets per day.
(a) What is the probability no tweets are sent in a two day period? (Hint: Your answer should depend on λ.)
Solution: The number of tweets sent in two days has the Poisson distribution with mean 2λ, so the probability that number is zero is $e^{-2 \lambda}$. (That is, $\frac{(2 \lambda)^{k} e^{-2 \lambda}}{k!}$ evaluated at $k=0$.)
(b) How many days would it take, on average, for 20 tweets to be sent? (Hint: Your answer should depend on λ.)
Solution: The mean time until a tweet occurs is $1 / \lambda$. So the time til 20 tweets occur has mean $20 / \lambda$. This is the mean of the Erlang distribution with parameters λ and 20 .
(c) Suppose the first day of observation there are 5 tweets, the second day 1 tweet, and the third day 2 tweets. What is $\widehat{\lambda}_{M L}$, the value of the maximum likelihood estimate of λ ? Solution: The three observations are independent, Poisson random variables, of mean λ. So the likelihood the observed values are $5,1,2$ is $\frac{e^{-\lambda} \lambda^{5}}{5!} \frac{e^{-\lambda} \lambda}{1!} \frac{e^{-\lambda} \lambda^{2}}{2!}$, and the ML estimate is obtained by maximizing this likelihood with respect to λ. It is equivalent to maximizing $\lambda^{8} e^{-3 \lambda}$ with respect to λ. This has derivative $\lambda^{7}(8-3 \lambda) e^{-3 \lambda}$, which is zero for $\lambda=8 / 3$. Moreover, the derivative is positive for $\lambda<8 / 3$ and negative for $\lambda>8 / 3$. So the maximizer is $8 / 3$. That is, $\widehat{\lambda}_{M L}=8 / 3$.
5. [18 points] Suppose under hypothesis H_{1}, the observation X has the $N(3,4)$ distribution. Under hypothesis H_{0}, the observation X has the $N(1,4)$ distribution.
(a) Find the MAP decision rule in case the prior probabilities satisfy $\frac{\pi_{0}}{\pi_{1}}=e$ (where e is the base of natural logarithm, $e=2.7182 \cdots$.)
Solution: The likelihood ratio is given by:

$$
\begin{aligned}
\Lambda(u) & =\frac{f_{1}(u)}{f_{0}(u)} \\
& =\exp \left\{-\frac{(u-3)^{2}}{8}+\frac{(u-1)^{2}}{8}\right\} \\
& =\exp \left\{\frac{u-2}{2}\right\} .
\end{aligned}
$$

The MAP rule is to compare the likelihood ratio to the threshold $\frac{\pi_{0}}{\pi_{1}}=e$. We have

$$
\Lambda(u)>e \text { is equivalent to } \frac{u-2}{2}>1 \text { which is equivalent to } u>4 .
$$

Hence the MAP rule is the following:
If $X>4$, declare H_{1} is true. If $X<4$, declare H_{0} is true.
(b) Find a decision rule such that $p_{\text {false alarm }}=p_{\text {miss }}$.

Solution: Since f_{1} and f_{0} are Gaussian pdfs with the same variance, they are each symmetric about their means, and they have the same shape. Thus, the decision rule that compares X to a threshold half way between the means gives $p_{\text {false }}$ larm $=p_{\text {miss }}$. Since $\frac{3+1}{2}=2$ the decision rule is the same as the ML rule: If $X>2$, declare H_{1} is true. If $X<2$, declare H_{0} is true.
6. [16 points] The following two parts are unrelated.
(a) Suppose X and Y have joint pdf $f_{X, Y}(u, v)=\left\{\begin{array}{cl}C u v & u^{2}+v^{2} \leq 1, u \geq 0, v \geq 0 \\ 0 & \text { else },\end{array}\right.$, for some appropriate constant C. Find the conditional pdf of Y given $X, f_{Y \mid X}(v \mid u)$, and also determine whether X and Y are independent. (Hints: It is not necessary to determine C. Be sure to specify what values of $u f_{Y \mid X}(v \mid u)$ is defined for, and specify for all $v \in \mathbb{R}$.)
Solution: The support of f_{X} is $(0,1)$. For $0<u<1$,
$f_{X}(u)=\int_{0}^{\sqrt{1-u^{2}}} C u v d v=\left.\frac{C u v^{2}}{2}\right|_{v=0} ^{\sqrt{1-u^{2}}}=\frac{C u\left(1-u^{2}\right)}{2}$.
Thus, $f_{Y \mid X}(v \mid u)$ is well defined if $0<u<1$, and for such values of u,

$$
f_{Y \mid X}(v \mid u)=\left\{\begin{array}{cl}
\frac{C u v}{\frac{C u\left(1-u^{2}\right)}{2}}=\frac{2 v}{1-u^{2}} & 0 \leq v \leq \sqrt{1-u^{2}} \\
0 & \text { else. }
\end{array}\right.
$$

No, X and Y are not independent because the support of $f_{X, Y}$ is not a product set, or because $f_{Y \mid X}(v \mid u)$ depends on u.
(b) Suppose X and Y have joint pdf $f_{X, Y}(u, v)=\left\{\begin{array}{cl}0.5 & u \in[0,2], v \in[0,1] \\ 0 & \text { else. }\end{array}\right.$. Find the conditional pdf of Y given $X, f_{Y \mid X}(v \mid u)$, and also determine whether X and Y are independent.
Solution: Yes, X and Y are independent. X is uniformly distributed over $[0,2]$ and Y is uniformly distributed over $[0,1]$. Thus, $f_{Y \mid X}(v \mid u)=f_{Y}(v)$ for all v (if $u \in[0,2]$). That is, if $u \in[0,2]$,

$$
f_{Y \mid X}(v \mid u)= \begin{cases}1 & v \in[0,1] \\ 0 & v \notin[0,1] .\end{cases}
$$

