ECE 313: Exam II

Wednesday, April 13, 2016 7:00 p.m. — 8:15 p.m. Aa-Hs in DCL 1320, Ht-Lf in ECEB 1013, Lg-Np in ECEB 1015, Nq-Zz in ECEB 1002

1. [10 points] Consider the CDF in the figure below.

Carefully provide numerical answers for the following; partial credit will not be assigned for incorrect answers.

- (a) Obtain $P\{0.5 < X \le 1\}$. **Solution:** Recalling that $F_X(c) = P\{X \le c\}$, one obtains $P\{0.5 < X \le 1\} = F_X(1) - F_X(0.5) = 0.75 - 0.25 = 0.50$.
- (b) Obtain $P\{0.5 \le X < 1\}$. Solution: $P\{0.5 \le X < 1\} = F_X(1^-) - F_X(0.5^-) = 0.5 - 0.25 = 0.25$.
- 2. [20 points] An amplifier has gain A = gR where g, the transconductance, is a positive constant, and R, the load resistance, is uniformly distributed in the interval [9, 11].
 - (a) Determine E[A] and Var(A) in terms of g. **Solution:** $E[A] = gE[R] = g\frac{(11+9)}{2} = 10g$, $Var(A) = g^2Var(R) = g^2\frac{(11-9)^2}{12} = \frac{g^2}{3}$.
 - (b) Determine the minimum value of g that would ensure that $P\{A \ge 10\} \ge 0.8$, i.e., at least 80% of the amplifiers have a gain of 10 or more. **Solution:** Ensuring $P\{A \ge 10\} \ge 0.8$ is the same as ensuring $P\{gR \ge 10\} \ge 0.8$, or equivalently, $P\{R \ge \frac{10}{g}\} \ge 0.8$. We want the minimum g, so we solve $P\{R \ge \frac{10}{g}\} = 0.8$ for g. Since R is uniformly distributed over [9, 11], this requires $\frac{10}{g} \in [9, 11]$ so that $P\{R \ge \frac{10}{g}\} = (11 - \frac{10}{g})/2$. Solving $(11 - \frac{10}{g})/2 = 0.8$ yields g = 10/9.4 = 50/47.
- 3. [18 points] The three parts of this problem are unrelated.
 - (a) Let X be Gaussian with mean 1 and variance 4. Express $P\{(X-1)^2 < 16\}$ in terms of the Φ function. **Solution:** $P\{(X-1)^2 < 16\} = P\{-4 < X - 1 < 4\} = P\{\frac{-4}{2} < \frac{X-1}{2} < \frac{4}{2}\} = \Phi(2) - \Phi(-2)$, because $\frac{X-1}{2} \sim N(0,1)$.

- (b) Let X ~ Binomial(160, 1/4). Use the Gaussian approximation with continuity correction to approximate P{45 ≤ X ≤ 50} in terms of the Φ function.
 Solution: Note that X has mean np = 40 and variance np(1 − p) = 30, and under the Gaussian approximation with the continuity correction, P{45 ≤ X ≤ 50} = P{44.5 ≤ X ≤ 50.5} = P{4.5 √30 ≤ X-40 / √30 ≤ 10.5 / √30} ≈ Φ(10.5 / √30) − Φ(4.5 / √30).
- (c) Let X have pdf $f_X(u) = \frac{u^2}{3}$ for $u \in (-2, 1)$ and zero else. Let Y = -2X and obtain the pdf of Y, $f_Y(v)$ for all v. **Solution:** Recall that if Y = aX + b, then $f_Y(v) = \frac{1}{|a|} f_X\left(\frac{v-b}{a}\right)$ (this also follows from the three step procedure for finding the pdf of a function of a random variable), hence in this case $f_Y(v) = \frac{1}{|-2|} f_X\left(\frac{v}{-2}\right) = \frac{1}{2} f_X\left(-\frac{v}{2}\right) = \frac{1}{6} \left(-\frac{v}{2}\right)^2 = \frac{v^2}{24}$. The support of f_Y is obtained by realizing the transformation of the endpoints of the support of f_X , which yields the left endpoint u = -2 transformed into v = 4 and the right endpoint u = 1 transformed into v = -2. Hence, $f_Y(v) = \frac{v^2}{24}$ for $v \in (-2, 4)$ and zero else.
- 4. [18 points] Suppose the times of tweets sent out by a certain celebrity form a Poisson process, with mean rate λ tweets per day.
 - (a) What is the probability no tweets are sent in a two day period? (Hint: Your answer should depend on λ .)

Solution: The number of tweets sent in two days has the Poisson distribution with mean 2λ , so the probability that number is zero is $e^{-2\lambda}$. (That is, $\frac{(2\lambda)^k e^{-2\lambda}}{k!}$ evaluated at k = 0.)

(b) How many days would it take, on average, for 20 tweets to be sent? (Hint: Your answer should depend on λ .)

Solution: The mean time until a tweet occurs is $1/\lambda$. So the time til 20 tweets occur has mean $20/\lambda$. This is the mean of the Erlang distribution with parameters λ and 20.

- (c) Suppose the first day of observation there are 5 tweets, the second day 1 tweet, and the third day 2 tweets. What is $\hat{\lambda}_{ML}$, the value of the maximum likelihood estimate of λ ? **Solution:** The three observations are independent, Poisson random variables, of mean λ . So the likelihood the observed values are 5,1,2 is $\frac{e^{-\lambda}\lambda^5}{5!} \frac{e^{-\lambda}\lambda}{1!} \frac{e^{-\lambda}\lambda^2}{2!}$, and the ML estimate is obtained by maximizing this likelihood with respect to λ . It is equivalent to maximizing $\lambda^8 e^{-3\lambda}$ with respect to λ . This has derivative $\lambda^7 (8 - 3\lambda) e^{-3\lambda}$, which is zero for $\lambda = 8/3$. Moreover, the derivative is positive for $\lambda < 8/3$ and negative for $\lambda > 8/3$. So the maximizer is 8/3. That is, $\hat{\lambda}_{ML} = 8/3$.
- 5. [18 points] Suppose under hypothesis H_1 , the observation X has the N(3,4) distribution. Under hypothesis H_0 , the observation X has the N(1,4) distribution.
 - (a) Find the MAP decision rule in case the prior probabilities satisfy $\frac{\pi_0}{\pi_1} = e$ (where e is the base of natural logarithm, $e = 2.7182 \cdots$.) Solution: The likelihood ratio is given by:

$$\Lambda(u) = \frac{f_1(u)}{f_0(u)}$$

= $\exp\left\{-\frac{(u-3)^2}{8} + \frac{(u-1)^2}{8}\right\}$
= $\exp\left\{\frac{u-2}{2}\right\}.$

The MAP rule is to compare the likelihood ratio to the threshold $\frac{\pi_0}{\pi_1} = e$. We have

$$\Lambda(u) > e$$
 is equivalent to $\frac{u-2}{2} > 1$ which is equivalent to $u > 4$.

Hence the MAP rule is the following:

If X > 4, declare H_1 is true. If X < 4, declare H_0 is true.

(b) Find a decision rule such that $p_{false\ alarm} = p_{miss}$.

Solution: Since f_1 and f_0 are Gaussian pdfs with the same variance, they are each symmetric about their means, and they have the same shape. Thus, the decision rule that compares X to a threshold half way between the means gives $p_{false_alarm} = p_{miss}$. Since $\frac{3+1}{2} = 2$ the decision rule is the same as the ML rule: If X > 2, declare H_1 is true. If X < 2, declare H_0 is true.

6. [16 points] The following two parts are unrelated.

(a) Suppose X and Y have joint pdf $f_{X,Y}(u,v) = \begin{cases} Cuv \quad u^2 + v^2 \leq 1, u \geq 0, v \geq 0 \\ 0 \quad \text{else}, \end{cases}$, for some appropriate constant C. Find the conditional pdf of Y given X, $f_{Y|X}(v|u)$, and also determine whether X and Y are independent. (Hints: It is not necessary to determine C. Be sure to specify what values of $u f_{Y|X}(v|u)$ is defined for, and specify for all $v \in \mathbb{R}$.) Solution: The support of f_X is (0, 1). For 0 < u < 1,

$$f_X(u) = \int_0^{\sqrt{1-u^2}} Cuv dv = \frac{Cuv^2}{2} \Big|_{v=0}^{\sqrt{1-u^2}} = \frac{Cu(1-u^2)}{2}.$$

Thus, $f_{Y|X}(v|u)$ is well defined if 0 < u < 1, and for such values of u,

$$f_{Y|X}(v|u) = \begin{cases} \frac{Cuv}{\frac{Cu(1-u^2)}{2}} = \frac{2v}{1-u^2} & 0 \le v \le \sqrt{1-u^2} \\ 0 & \text{else.} \end{cases}$$

No, X and Y are not independent because the support of $f_{X,Y}$ is not a product set, or because $f_{Y|X}(v|u)$ depends on u.

(b) Suppose X and Y have joint pdf $f_{X,Y}(u,v) = \begin{cases} 0.5 & u \in [0,2], v \in [0,1] \\ 0 & \text{else.} \end{cases}$. Find the conditional pdf of Y given X, $f_{Y|X}(v|u)$, and also determine whether X and Y are independent.

Solution: Yes, X and Y are independent. X is uniformly distributed over [0, 2] and Y is uniformly distributed over [0, 1]. Thus, $f_{Y|X}(v|u) = f_Y(v)$ for all v (if $u \in [0, 2]$). That is, if $u \in [0, 2]$,

$$f_{Y|X}(v|u) = \begin{cases} 1 & v \in [0,1] \\ 0 & v \notin [0,1]. \end{cases}$$