ECE 313: Problem Set 9

Gaussian Random Variable, Functions of a Random Variable

Due: Wednesday, March 27 at 6 p.m.

Reading: ECE 313 Course Notes, Sections 3.6-3.8.

1. [Gaussian CDF]

Let X denote a unit Gaussian random variable. Its CDF is $\Phi(u)$.

- (a) What is the derivative of $\exp(-u^2/2)$? Use this result to compute $E[\|X\|]$.
- (b) $Q(x) = 1 \Phi(x)$ is the *complementary* CDF. A useful bound is $Q(x) \le \frac{1}{2} \exp(-x^2/2)$ for $x \ge 0$. Derive this bound by first proving that $t^2 x^2 > (t x)^2$ for t > x > 0 and then applying this to

$$\exp(x^2/2)Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2 - x^2}{2}\right) dt.$$

2. [Table of Q functions]

The width of a wire on a circuit board is modeled as a Gaussian random variable with mean $\mu = 0.9$ microns and standard deviation $\sigma = 0.003$ microns.

- (a) Wires that fail to meet the quality requirement that the width be within the range 0.9 ± 0.005 microns are said to be defective. What percentage of wires are defective?
- (b) A new manufacturing process that produces smaller variations in wires is to be designed so that no more than 1 defective wires occur in 100. What is the maximum value of σ for the new process if the new process achieves the goal?

3. [Function of a Random Variable]

The current I through a semiconductor diode is related to the voltage V across the diode as $I = I_0(\exp(V) - 1)$ where I_0 is the magnitude of the reverse current. Suppose that the voltage across the diode is modeled as a continuous random variable V with pdf

$$f_{\mathcal{V}}(u) = 0.5 \exp(-|u|), -\infty < u < \infty.$$

Then, the current \mathcal{I} is also a continuous random variable.

- (a) What values can \mathcal{I} take on?
- (b) Find the CDF of \mathcal{I} .
- (c) Find the pdf of \mathcal{I} .

4. I

A signal $\mathbb X$ is modeled as a unit (standard) Gaussian random variable. For some applications, however, only the quantized value $\mathbb Y$ (where $\mathbb Y=\alpha$ if $\mathbb X>0$ and $\mathbb Y=-\alpha$ if $\mathbb X\leq 0$) is used. Note that $\mathbb Y$ is a discrete random variable.

- (a) What is the pmf of \mathbb{Y} ?
- (b) The squared error in representing \mathbb{X} by \mathbb{Y} is $\mathbb{Z} = \left\{ \begin{array}{l} (\mathbb{X} \alpha)^2, & \text{if } \mathbb{X} > 0, \\ (\mathbb{X} + \alpha)^2, & \text{if } \mathbb{X} \leq 0, \end{array} \right.$ and varies as different trials of the experiment produce different values of \mathbb{X} . We would like to choose the value of α so as to minimize the mean squared error $\mathbb{E}[\mathbb{Z}]$. Use LOTUS to calculate $\mathbb{E}[\mathbb{Z}]$ (the answer will be a function of α), and then find the value of α that minimizes $\mathbb{E}[\mathbb{Z}]$.

- (c) We now get more ambitious and use a 3-bit A/D converter which first quantizes \mathbb{X} to the nearest integer \mathbb{W} in the range 3 to +3. Thus, $\mathbb{W}=3$ if $\mathbb{X}\geq 2.5$, $\mathbb{W}=2$ if $1.5\leq \mathbb{X}<2.5$, $\mathbb{W}=1$ if $0.5\leq \mathbb{X}<1.5$, \cdots , $\mathbb{W}=-3$ if $\mathbb{X}<-2.5$. Note that \mathbb{W} is also a discrete random variable. Find the pmf of \mathbb{W} .
- 5. [] Consider a sphere whose radius is a random variable \mathcal{R} with pdf $f_{\mathcal{R}}(u) = 2u, \ 0 < u < 1$, and 0 otherwise.
 - (a) What is the average radius of the sphere?
 - (b) What is the average volume?
 - (c) What is the average surface area?
 - (d) If a sphere of average radius is called an *average sphere*, then does an average sphere have the average volume? Does it have the average surface area?
- 6. [] \mathbb{X} denotes a *uniform* random variable with mean 1 and variance 3. Find the pdf of $\mathbb{Y} = |\mathbb{X}|$.