ECE 313: Problem Set 11 Independent RVs; Sums of RVs

Due: Wednesday, April 18 at 4 p.m.

Reading: ECE 313 Course Notes, Sections 4.4–4.6.

1. [Independent Random Variables]

Determine, for each of the following joint distributions, whether or not X and Y are independent random variables.

(a)
$$p_{X,Y}(j,k) = \frac{(n!)^2}{j!k!(n-j)!(n-k)!} p^{j+k} (1-p)^{2n-j-k}, \quad 0 \le j \le n, \ 0 \le k \le n$$

(b)
$$p_{X,Y}(j,k) = \frac{n!}{j!k!(n-j-k)!}p^{j+k}(1-2p)^{n-j-k}, \quad 0 \le j \le n, \ 0 \le k \le n-j$$

(c)
$$f_{X,Y}(u,v) = \frac{1}{2\pi} e^{-\frac{1}{2}(u^2 + v^2)}, \quad -\infty < u < \infty, \quad -\infty < v < \infty$$

(d)
$$f_{X,Y}(u,v) = \frac{\lambda^2}{4} e^{-\lambda|u|} e^{-\lambda|v|}, \quad -\infty < u < \infty, \quad -\infty < v < \infty$$

(e)
$$f_{X,Y}(u,v) = \frac{\lambda^2}{2} e^{-\lambda|u+v|} e^{-\lambda|u-v|}, \quad -\infty < u < \infty, \quad -\infty < v < \infty$$

(f)
$$f_{X,Y}(u,v) = \begin{cases} \frac{1}{12} & 1 \le u \le 4, \ 1 \le v \le 2\\ \frac{1}{36} & 1 \le u \le 4, \ 3 \le v \le 6\\ \frac{1}{4} & 5 \le u \le 6, \ 1 \le v \le 2\\ \frac{1}{12} & 5 \le u \le 6, \ 3 \le v \le 6\\ 0 & \text{otherwise} \end{cases}$$

2. [Conditional Distributions]

For each of the distributions in problem 1, find the conditional distribution $p_{Y|X}(k|j)$ or $f_{Y|X}(v|u)$. You may find some of the summations in appendix 6.2 useful.

(a)
$$p_{X,Y}(j,k) = \frac{(n!)^2}{j!k!(n-j)!(n-k)!} p^{j+k} (1-p)^{2n-j-k}, \quad 0 \le j \le n, \ 0 \le k \le n$$

(b)
$$p_{X,Y}(j,k) = \frac{(n!)}{j!k!(n-j-k)!} p^{j+k} (1-2p)^{n-j-k}, \quad 0 \le j \le n, \quad 0 \le k \le n-j$$

(c)
$$f_{X,Y}(u,v) = \frac{1}{2\pi} e^{-\frac{1}{2}(u^2 + v^2)}, \quad -\infty < u < \infty, \quad -\infty < v < \infty$$

(d)
$$f_{X,Y}(u,v) = \frac{\lambda^2}{4} e^{-\lambda|u|} e^{-\lambda|v|}, \quad -\infty < u < \infty, \quad -\infty < v < \infty$$

(e)
$$f_{X,Y}(u,v) = \frac{\lambda^2}{2} e^{-\lambda|u+v|} e^{-\lambda|u-v|}, \quad -\infty < u < \infty, \quad -\infty < v < \infty$$

(f)
$$f_{X,Y}(u,v) = \begin{cases} \frac{1}{12} & 1 \le u \le 4, \ 1 \le v \le 2\\ \frac{1}{36} & 1 \le u \le 4, \ 3 \le v \le 6\\ \frac{1}{4} & 5 \le u \le 6, \ 1 \le v \le 2\\ \frac{1}{12} & 5 \le u \le 6, \ 3 \le v \le 6 \end{cases}$$

3. [Poisson Processes and Their Kin]

(a) Roughly speaking, we can model the electrical voltage spikes on a neuron as the counts in a Poisson process, with some non-negative count rate λ . As you remember, the intercount times in a Poisson process are random variables with the following pdf:

$$f_U(u) = \begin{cases} \lambda e^{-\lambda u} & u \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

Let T_2 be the second-order count time of a Poisson process with rate λ . Recall from section 3.5.2 that T_2 can be written as the sum of two random variables, $T_2 = U_1 + U_2$, where U_1 and U_2 are independent and identically distributed (i.i.d.) random variables with pdf as given by Eq. 1. Express the relationship of U_1 , U_2 , and U_2 as a convolution by integrating over U_2 . Show that solving the convolution integral yields an Erlang pdf for U_1 , U_2 , and U_3 are independent and identically distributed (i.i.d.) random variables with pdf as given by Eq. 1. Express the relationship of U_1 , U_2 , and U_3 as a convolution by integrating over U_3 .

(b) A Poisson process is memoryless, but real-world processes often have some type of memory. For example, real-world neurons are nearly Poisson, except that after the neuron fires, there is a small "refractory period" of b milliseconds during which it is unable to fire again. If we assume the neuron fires at time zero, so U_1 is the first time it fires after time zero and $U_1 + U_2$ is the second time it fires after time zero, then it is reasonable to assume that U_1 and U_2 are two first-order count times with pdfs $f_U(u)$ given by:

$$f_U(u) = \begin{cases} \lambda e^{-\lambda(u-b)} & u \ge b \\ 0 & \text{otherwise} \end{cases}$$
 (2)

Define $T_2 = U_1 + U_2$ to be the second-order count time in this process. Find the pdf $f_{T_2}(t)$.

(c) Equation 2 is a pretty good model of a neuron acting without external stimulation, but it is a pretty bad model of a neuron acting in the presence of external stimulation. For example, in response to external stimulation, many neurons will fire with a quasi-periodic firing rate, meaning that U_2 and U_1 are not independent: they are not perfectly identical, but they have a high probability of being approximately the same. A simple model of quasi-periodicity represents $f_{U_1,U_2}(u,v) = f_{U_1}(u)f_{U_2|U_1}(v|u)$, where $f_{U_1}(u)$ and $f_{U_2|U_1}(v|u)$ are defined as:

$$f_{U_1}(u) = \begin{cases} \lambda e^{-\lambda u} & u \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (3)

$$f_{U_2|U_1}(v|u) = \begin{cases} 0.5 + 0.5\lambda e^{-\lambda v} & u \le v < u + 1\\ 0.5\lambda e^{-\lambda v} & 0 \le v < u \text{ or } u + 1 \le v\\ 0 & \text{otherwise} \end{cases}$$
(4)

Define $T_2 = U_1 + U_2$ to be the second-order count time in this process. Find $f_{T_2}(t)$.

4. [Quasi-Gaussian Random Variables]

Suppose that X_1 , X_2 and X_3 are independent continuous random variables, each drawn from the following pdf:

$$f_X(u) = \begin{cases} 1 & 0 \le u \le 1\\ 0 & \text{otherwise} \end{cases}$$

And suppose that $Y = X_1 + X_2 + X_3$.

- (a) Find E[Y] and Var(Y). Since X_1 , X_2 , and X_3 are independent, you may assume that $Var(Y) = Var(X_1) + Var(X_2) + Var(X_3)$.
- (b) Find $f_Y(v)$. Sketch $f_Y(v)$, showing the values at v=0, v=1, v=2, and v=3.
- (c) Define \tilde{Y} to be a Gaussian random variable with the same mean and variance as Y. Evaluate the Gaussian approximation for Y near its edge, and near its center, by finding the following particular values:
 - i. $F_Y(0.1)$
 - ii. $F_{\tilde{V}}(0.1)$
 - iii. $F_Y(1.4)$
 - iv. $F_{\tilde{V}}(1.4)$