ECE 313: Problem Set 12

Functions of random variables, conditional pdfs, covariances

Due: Wednesday, May 5 at 4 p.m.

Reading: Ross, Chapter 6, Sections 1-4; Powerpoint Lecture Slides, Sets 30-34

Noncredit Exercises: Chapter 6: Problems 1-3, 9, 10, 13, 15, 19-23, 40-42; Theoretical Exercises 4, 6; Self-Test Problems 3, 5, 6, 7

1. [Joint Distributions]

Suppose two jointly continuous random variables X and Y have joint distribution given by

$$f_{\mathbb{X},\mathbb{Y}}(u,v) = \begin{cases} \frac{1}{C}, & \text{if } -\frac{1}{2} \leq u \leq \frac{1}{2}, -\frac{1}{2} \leq v \leq \frac{1}{2}, \text{ and } u^2 + v^2 > \frac{1}{16} \\ 0, & \text{otherwise} \end{cases}$$

(a) find C.

(b) find $f_{\mathbb{X}|\mathbb{Y}}(u|0.45)$, $f_{\mathbb{X}|\mathbb{Y}}(u|0)$, $f_{\mathbb{Y}|\mathbb{X}}(v|0.45)$, and $f_{\mathbb{Y}|\mathbb{X}}(v|0)$. Are \mathbb{X} and \mathbb{Y} independent?

(c) Let $\mathbb{Z} = \mathbb{X}^2 + \mathbb{Y}^2$. Find $F_{\mathbb{Z}}(\frac{\pi}{64})$.

2. [Joint Distributions]

Let X and Y be two independent random variables where X is exponentially distributed of rate λ_1 and Y is exponentially distributed of rate λ_2 .

- (a) Let $\mathbb{Z} = \min(\mathbb{X}, \mathbb{Y})$. Find the density of \mathbb{Z} , given by $f_{\mathbb{Z}}(a)$. (hint: first find $P(\mathbb{Z} > a)$ using equivalence of events).
- (b) Define G(c) as

$$G(c) = \int_{u=c}^{\infty} \int_{v=c}^{u} \lambda_1 e^{-\lambda_1 u} \lambda_2 e^{-\lambda_2 v} dv du.$$

Solve for G(c) in closed form.

- (c) Let B be the event $\{X > Y\}$. Express P(B) in terms of G(c) for some value of c and find solve for it in closed form.
- (d) Express $P(\mathbb{Z} > c|B)$ in terms of a ratio $G(c_{\text{num}})/G(c_{\text{denom}})$ for some specific values of c_{num} and c_{denom} , solve for it in closed form, and find $f_{\mathbb{Z}|B}(c)$.
- (e) show without any integrals why $f_{\mathbb{Z}|B^c}(c)$ is also exponentially distributed of rate λ .

3. [Using a joint density]

Suppose X and Y are jointly continuous random variables distributed over the unit square with the joint pdf given by

$$f_{X,Y}(u,v) = \begin{cases} \frac{3u^2}{2} + 2uv & u,v \in [0,1] \\ 0 & \text{else} \end{cases}$$

(a) Are X and Y independent? Briefly justify your answer.

- (b) Calculate E[X].
- (c) Calculate the correlation, E[XY].
- (d) Calculate the pdf, $f_Y(v)$, of Y. Be sure to specify it for $-\infty < v < \infty$.
- (e) Calculate the conditional density $f_{X|Y}(u|v)$. Be sure to indicate what values of v it is well-defined for, and for such v, specify it for $-\infty < u < \infty$.

4. [Working with independent Gaussian random variables]

Let X and Y be independent, N(0,1) random variables.

- (a) Find Cov(3X + 2Y, X + 5Y + 10).
- (b) Express $P\{X+4Y\geq 2\}$ in terms of the Q function defined by $Q(u)=\int_u^\infty \frac{1}{\sqrt{2\pi}}e^{-v^2/2}dv$.
- (c) Express $P\{(X-Y)^2 > 9\}$ in terms of the Q function. (Hint: For what values of X-Y is the event true?)

5. [Circularly symmetric pdfs]

The joint pdf of X and Y is said to be *circularly symmetric about the origin* if $f_{X,Y}(u,v) = g(r)$ where $r = \sqrt{u^2 + v^2}$ is the distance of the point (u,v) from the origin.

(a) Let $\mathbb{R} = \sqrt{\mathbb{X}^2 + \mathbb{Y}^2}$ denote the distance of the random point (\mathbb{X}, \mathbb{Y}) from the origin. Note that $\mathbb{R} \geq 0$. For $\rho \geq 0$, express $F_{\mathbb{R}}(\rho) = P\{\mathbb{R} \leq \rho\}$ as a double integral with respect to u and v and then transform this integral to polar coordinates to show that

$$F_{\mathbb{R}}(\rho) = 2\pi \int_{r=0}^{\rho} r \cdot g(r) dr \text{ and } f_{\mathbb{R}}(\rho) = \begin{cases} 2\pi \rho g(\rho), & \rho \ge 0, \\ 0, & \rho < 0. \end{cases}$$

- (b) Now suppose that \mathbb{X} and \mathbb{Y} are independent $\mathcal{N}(0, \sigma^2)$ random variables. Verify that their joint pdf has circular symmetry about the origin, and hence deduce that \mathbb{R} has the Rayleigh pdf $f_{\mathbb{R}}(\rho) = \frac{\rho}{\sigma^2} \exp\left(-\frac{\rho^2}{2\sigma^2}\right)$, $\rho \geq 0$ (cf. Ross, p. 214 or 277). Also, show that $P\{\mathbb{R} > \rho\} = \exp\left(-\frac{\rho^2}{2\sigma^2}\right)$. In communications applications, the noise at the output of a bandpass filter with center frequency f_0 Hz can be expressed as $\mathbb{X}(t)\cos(2\pi f_0 t) \mathbb{Y}(t)\sin(2\pi f_0 t)$ where for each time instant t, $\mathbb{X}(t)$ and $\mathbb{Y}(t)$ are independent $\mathcal{N}(0, \sigma^2)$ random variables. The noise amplitude $\mathbb{R}(t) = \sqrt{(\mathbb{X}(t))^2 + (-\mathbb{Y}(t))^2}$ is thus a Rayleigh random variable for each t. Note that $\mathbb{E}[\mathbb{R}^2(t)] = \mathbb{E}[\mathbb{X}^2(t) + \mathbb{Y}^2(t)] = 2\sigma^2$ is the noise power.
- (c) Let $\sigma^2 = 1$ in part (b). For $\alpha > 0$, sketch on the *u-v* plane the region $\{|\mathbb{X}| > \alpha, |\mathbb{Y}| > \alpha\}$ and show that it is a subset of the region $\{\mathbb{R} > \sqrt{2}\alpha\}$. Hence conclude that

$$P\{|\mathbb{X}| > \alpha, |\mathbb{Y}| > \alpha\} = 4Q^2(\alpha) < P\{\mathbb{R} > \sqrt{2}\alpha\} = \exp(-\alpha^2)$$

and therefore for $\alpha \geq 0$, $Q(\alpha) \leq \frac{1}{2} \exp(-\alpha^2/2)$, which you also proved in Problem 10.2.

6. [Drill problem on jointly continuous random variables II]

The jointly continuous random variables X and Y have joint pdf

$$f_{\mathbb{X},\mathbb{Y}}(u,v) = egin{cases} 2\exp(-u-v), & 0 < u < v < \infty, \\ 0, & ext{elsewhere.} \end{cases}$$

- (a) Sketch the u-v plane and indicate on it the region over which $f_{\mathbb{X},\mathbb{Y}}(u,v)$ is nonzero.
- (b) Find the marginal pdfs of X and Y.
- (c) Are the random variables X and Y independent?
- (d) Find $P\{\mathbb{Y} > 3\mathbb{X}\}.$
- (e) For $\alpha > 0$, find $P\{X + Y < \alpha\}$.
- (f) Use the result in part (e) to determine the pdf of the random variable $\mathbb{Z} = \mathbb{X} + \mathbb{Y}$.

7. [Some moments for a random rectangle]

Let A = XY denote the area and L = 2(X + Y) the length of the perimeter, of a rectangle with length X and height Y, such that X and Y are independent, and uniformly distributed on the interval [0,1].

- (a) Find E[A] and E[L].
- (b) Find Var(A). (Hint: Find $E[A^2]$ first.)
- (c) Find Var(L).
- (d) Find Cov(A, L). (Hint: Find E[AL] first.)
- (e) Find the correlation coefficient, $\rho_{A,L}$. (Hint: Should be less than, but fairly close to, one. Why?)