ECE 313: Hour Exam II

Monday April 13, 2009 7:00 p.m. — 8:00 p.m. 100 Noyes Laboratory

- 1. [20 points] Throughout this problem, A, B, and C denote events of probabilities 0.1, 0.2 and 0.2 respectively. In different parts of this problem, you are asked to find the probabilities of some events under various assumptions about A, B, and C. DO NOT carry over the assumptions in one part to another part of the problem.
 - (a) [7 points] Find $P(A^c \cup B^c \cup C^c)$ assuming that A, B, and C are mutually independent events.
 - (b) [6 points] Find $P(A^c \cup B^c \cup C^c)$ assuming that A, B, and C are mutually exclusive events.
 - (c) [7 points] Find the value of $P(A \cup BC)$ assuming that A and B are mutually exclusive events and B and C are mutually independent events.
- 2. [30 points] Consider the following binary hypothesis testing problem. If hypothesis H_0 is true, the continuous random variable $\mathbb X$ is uniformly distributed on the interval (-2,2), while if hypothesis H_1

is true, the pdf of \mathbb{X} is $f_1(u) = \begin{cases} \frac{1}{4}(2-|u|), & |u| < 2, \\ 0, & \text{otherwise.} \end{cases}$

- (a) [14 points] The maximum-likelihood decision rule can be stated in the form $|\mathbb{X}| \gtrsim \eta$. Specify H_{1-x} whether x denotes 0 or 1, and find the values of η , the probability of false alarm P_{FA} , and the probability of missed detection P_{MD} .
- (b) [4 points] Suppose the hypotheses have a priori probabilities $\pi_0 = 1/3$ and $\pi_1 = 2/3$. What is the error probability P(E) of the maximum-likelihood decision rule?
- (c) [12 points] The MAP (also known as the minimum-error-probability or Bayesian) decision rule H_x can be stated in the form $|\mathbb{X}| \gtrsim \xi$. Specify whether x denotes 0 or 1, and find the values of ξ and the error probability P(E).
- 3. [25 points] For this problem, you will need to use the table of values for the unit Gaussian CDF $\Phi(x)$ on the last page of this exam booklet.

 $\text{The random variable X has pdf $f_X(u)$} = \begin{cases} \frac{K}{2\sqrt{2\pi}} \exp\bigg(-\frac{(u-2)^2}{8}\bigg), & 0 \leq u \leq 4, \\ 0, & \text{otherwise.} \end{cases}$

- (a) [10 points] Find $P\{-1 \le X \le 1\}$. Express your answer in terms of K and numerical values obtained from the table.
- (b) [10 points] Determine the numerical value of K. DO NOT go back and substitute this numerical value into your answer to part (a).
- (c) [5 points] Determine the numerical value of E[X].
- 4. [25 points] Let $Y = (1+X)^5$, where X is uniformly distributed over the interval [0, 1].
 - (a) [10 points] Find the CDF of Y.
 - (b) [5 points] Find the pdf of Y.
 - (c) [10 points] Find the value of E[Y].