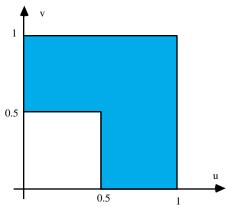
Assigned: Wednesday, April 30 Wednesday, May 7

Reading: Yates and Goodman: Chapters 5, 7 and 9.4–9.6

Problems:

- 1. Let $\mathbf{x}(\cdot)$ denote the characteristic function of a random variable \mathbf{X} .
- (a) What is the value of $\mathbf{x}(0)$? Does it matter whether \mathbf{X} is discrete or continuous?
- (b) Assume that $\mathbf{X}(\)$ is differentiable at =0. What is the value of $\frac{d}{d}$ $\mathbf{X}(\)$ at =0?
- (c) What is the characteristic function of a Cauchy random variable? [Hint: the answer can be found in the inside front cover of the Kudeki-Munson Lecture Notes for ECE 210] Why can't the method of part (b) be used to compute the mean of a Cauchy random variable?
- 2. The random point (X,Y) is uniformly distributed on the shaded region shown below.
- (a) Find the marginal pdf $f_{\mathbf{X}}(\mathbf{u})$ of the random variable \mathbf{X} .
- (b) Write down the marginal pdf $f_{\mathbf{V}}(\mathbf{v})$ of the random variable Y from your answer to part (b).
- (c) Find $P\{X < Y < 2X\}$.
- (d) What is $f_{\mathbf{X}|\mathbf{Y}}(\mathbf{u}|)$, the conditional pdf of \mathbf{X} given that $\mathbf{Y}=$, if satisfies 0<<1/2? What is $f_{\mathbf{X}|\mathbf{Y}}(\mathbf{u}|)$, the conditional pdf of \mathbf{X} given that $\mathbf{Y}=$, if satisfies 1/2<<1? Now, apply the theorem of total probability to compute the unconditional pdf of \mathbf{X} from $f_{\mathbf{X}|\mathbf{Y}}(\mathbf{u}|)$. Do you get the same answer as in part (a)?



- 3. Let E[X] = 1, E[Y] = 4, var(X) = 4, var(Y) = 9, and var(Y) = 0.1
- (a) If $\mathbf{Z} = 2(\mathbf{X} + \mathbf{Y})(\mathbf{X} \mathbf{Y})$, what is $\mathbf{E}[\mathbf{Z}]$?
- (b) If T = 2X + Y and U = 2X Y, what is cov(T, U)?
- (c) If $\mathbf{W} = 3\mathbf{X} + \mathbf{Y} + 2$, find $\mathbf{E}[\mathbf{W}]$ and $\mathbf{var}(\mathbf{W})$.
- (d) If X and Y are jointly Gaussian random variables, and W is as defined in (c), what is $P\{W>0\}$?
- **4.** This problem has three independent parts. Do not apply the numbers from one part to the others.
- (a) If $var(\mathbf{X} + \mathbf{Y}) = 36$ and $var(\mathbf{X} \mathbf{Y}) = 64$, what is $cov(\mathbf{X}, \mathbf{Y})$? If you are also told that $var(\mathbf{X}) = 3 \cdot var(\mathbf{Y})$, what is $\mathbf{X} \cdot \mathbf{Y}$?
- (b) If var(X + Y) = var(X Y), are X and Y uncorrelated?
- (c) If var(X) = var(Y), are X and Y uncorrelated?
- 5. Consider the random point (X, Y) of Problem 2 above.
- (a) Compute E[X] and var(X).
- (b) Explain why the random variable \mathbf{Y} has the same mean and variance as \mathbf{X} .
- (c) Compute E[XY] and hence find cov(X,Y). should hold. *Is* the above equation satisfied by the numerical values you obtained?

- The conditional pdf of \mathbf{X} given $\mathbf{Y} = \mathbf{w}$ was obtained in Problem 2 above, and it is easy to see that the conditional pdf of \mathbf{Y} given $\mathbf{X} = \mathbf{i}$ is similar. Now, the **best** (least mean-square error) estimate of \mathbf{Y} given $\mathbf{X} = \mathbf{i}$ is the mean of the conditional pdf of \mathbf{Y} given $\mathbf{X} = \mathbf{i}$. Thus, if \mathbf{X} has value 0.5, then $\mathbf{\hat{Y}}$, the best estimate of \mathbf{Y} , is 0.75 while if \mathbf{X} has value > 0.5, then $\mathbf{\hat{Y}} = 0.5$. Now, the **best linear** (least mean-square error) estimate of \mathbf{Y} (given that \mathbf{X} is known to have value \mathbf{Y} is $\mathbf{Y} = \mathbf{Y} = \mathbf$
- Since the estimates $\hat{\mathbf{Y}}$ and $\hat{\mathbf{Y}}$ depend on the value of \mathbf{X} , they really are *functions* of \mathbf{X} , that is, they are *random variables* that can be expressed as $\hat{\mathbf{Y}} = \begin{cases} 0.75, & 0 & \mathbf{X} & 0.5, \\ 0.5, & 0.5 < \mathbf{X} & 1 \end{cases}$ and $\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}\mathbf{X}$. What are the average and the mean-square errors of each estimate? That is, what are the values of $\mathbf{E}[(\mathbf{Y} \hat{\mathbf{Y}})]$, $\mathbf{E}[(\mathbf{Y} \hat{\mathbf{Y}})]^2$, and $\mathbf{E}[(\mathbf{Y} \hat{\mathbf{Y}})^2]$?