University of Illinois

Problem Set #12 Page 1 of 2

ECE 313 Spring 2003

Assigned: Wednesday, April 16 Wednesday, April 23 Due:

Reading: Yates and Goodman: Chapters 5 and 7

Problems:

(postponed from Problem Set #11) 1.

The discrete random variables **X** and **Y** have joint pmf $p_{\mathbf{X},\mathbf{Y}}(\mathbf{u},\mathbf{v})$ given by

	<u> </u>			
4	0	1/12	1/6	1/12
3	1/6	1/12	0	1/12
-1	1/12	1/6	1/12	0
v / u	0	1	3	5

- Find the marginal pmfs $p_{\mathbf{X}}(\mathbf{u})$ and $p_{\mathbf{V}}(\mathbf{v})$ of \mathbf{X} and \mathbf{Y} . (a)
- **(b)** Are the random variables **X** and **Y** independent?
- \mathbf{Y} and $P\{\mathbf{X} + \mathbf{Y} = 8\}$. Find P{X (c)
- (d) Find $p_{\mathbf{X}|\mathbf{Y}}(\mathbf{u}|3)$, $E[\mathbf{X}|\mathbf{Y}=3]$, and $var(\mathbf{X}|\mathbf{Y}=3)$.
- 2. The joint pdf of **X** and **Y** is given by

$$f_{\boldsymbol{X},\boldsymbol{Y}}(u,v) = \begin{cases} c \bullet (v^2 - u^2) \bullet \exp(-v), & -v & u & v, \, 0 < v < \ , \\ 0, & \text{elsewhere.} \end{cases}$$

- What is the value of c? (a)
- Find $f_{\mathbf{Y}}(\mathbf{u})$ and $f_{\mathbf{Y}}(\mathbf{v})$, the marginal pdfs of **X** and **Y** respectively. **(b)**
- (c) Find E[X].
- **3.**

The jointly continuous random variables
$$\boldsymbol{X}$$
 and \boldsymbol{Y} have joint pdf given by
$$f_{\boldsymbol{X},\boldsymbol{Y}}(u,v) = \left\{ \begin{array}{ll} 2 \ exp \ -(u \ + \ v), & 0 < u < v < \ , \\ 0, & elsewhere. \end{array} \right.$$

- Sketch the u-v plane and indicate on it the region over which $f_{X,Y}(u,v)$ is nonzero. (a)
- Find the marginal pdfs of X and Y. **(b)**
- Are the random variables **X** and **Y** independent? (c)
- Find P{ $\mathbf{Y} > 3\mathbf{X}$ }. (**d**)
- (e) For > 0, find $P\{X + Y\}$
- Use the result in part (e) to determine the pdf of the random variable $\mathbf{Z} = \mathbf{X} + \mathbf{Y}$. **(f)**
- 4. The jointly continuous random variables **X** and **Y** have joint pdf

$$f_{X,Y}(u,v) = \frac{1}{2}$$
, 0 u < 1, 0 v < 1, and 0 u + v < 1
0, u < 1, 0 v < 1, and 1 u + v < 2
0, otherwise.

Find $f_{\mathbf{X}}(\mathbf{u})$, $P\{\mathbf{X} + \mathbf{Y} = 3/2\}$ and $P\{\mathbf{X}^2 + \mathbf{Y}^2 = 1\}$.

- Let **X** and **Y** denote *independent* N(0, 2) variables. 5.
- What is the joint pdf $f_{\mathbf{X},\mathbf{Y}}(\mathbf{u},\mathbf{v})$ of \mathbf{X} and \mathbf{Y} ? (a)
- Sketch the u-v plane and indicate on it the region over which you need to integrate the joint **(b)** pdf in order to find $P\{X^2 + Y^2 > 2\}$. Then, compute $P\{X^2 + Y^2 > 2\}$. Hint: read the Solutions to Problems 4(b) of Problem Set #1 and Problem 2(a) of Problem Set #10.
- Now, let $\mathbf{Z} = \mathbf{X}^2 + \mathbf{Y}^2$ denote the squared distance of the random point (\mathbf{X}, \mathbf{Y}) from the (c) origin. Use the result of part (b) to deduce the pdf of **Z**.

From here onwards, assume $^2 = 1$ so that **X** and **Y** are independent *unit* Gaussian RVs.

- (d) Express $P\{|X| > \}$ in terms of the complementary unit Gaussian CDF function Q(x), and use this to write $P\{|X| > , |Y| > \}$ in terms of Q(x). (Remember commas mean intersections).
- (e) Sketch the u-v plane and show on it the region over which you must integrate the joint pdf to find $P\{|\mathbf{X}|>, |\mathbf{Y}|>\}$. Compare the sketches in parts (b) and (d) to deduce that $P\{|\mathbf{X}|>, |\mathbf{Y}|>\}$ $P\{\mathbf{X}^2+\mathbf{Y}^2>2^2\}$.
- Show that the inequality of part (d) implies that $Q(x) = (1/2) \cdot \exp(-x^2/2)$ as was proved earlier in Problem 2(b) of Problem Set #10.