Last lecture

Joint Gaussian Distribution (Ch 4.11)

- Motivation
- Facts
- Examples

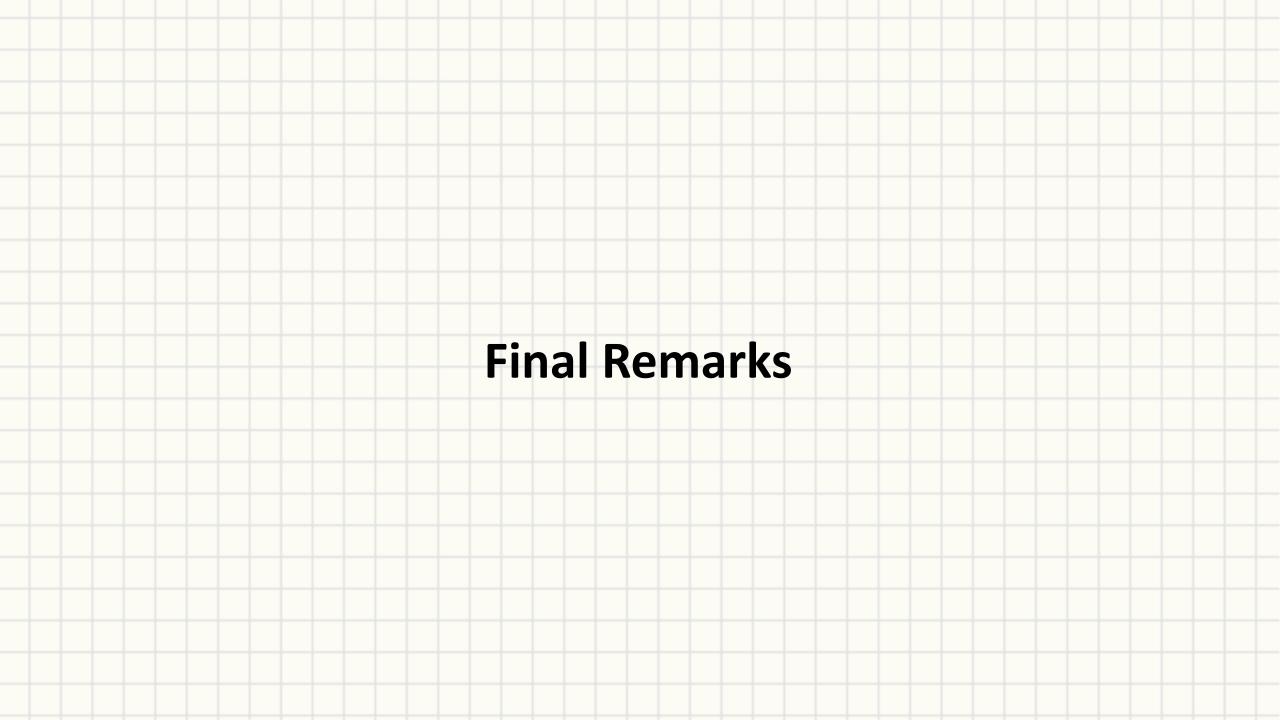
Agenda

Final Remarks about the course

- Where can I apply probabilities?
- Correlated advanced courses
- Probability mindset

Final Review I (Pre-midterm2)

- Discrete and continuous Distributions
- Poisson distribution/ process
- Gaussian and Φ / Q functions



Where can I apply probability?

- ML VAE, Diffusion, Bayesian DL, RL
 - Law of Large Number is everywhere in data. Noise is inherent
- Communication networks Queueing, error coding, fading
 - Every bits is a Bernoulli
- Signal Processing Kalman filter, Wiener filer, spectral analysis
 - Noise is the signal's shadow learn the shadow, and you master the signal
- Robotics & control Tracking, SLAM, sensor fusion
 - Model the unknowns That's reality

Where can I apply probability?

- Computer Security Cryptography strength, side channel attacks
 - Security is fundamentally a probability game
- Semiconductor Devices Reliability & lifetime analysis
 - At microscopic scales, randomness is the rule, not the exception

What advanced courses are correlated

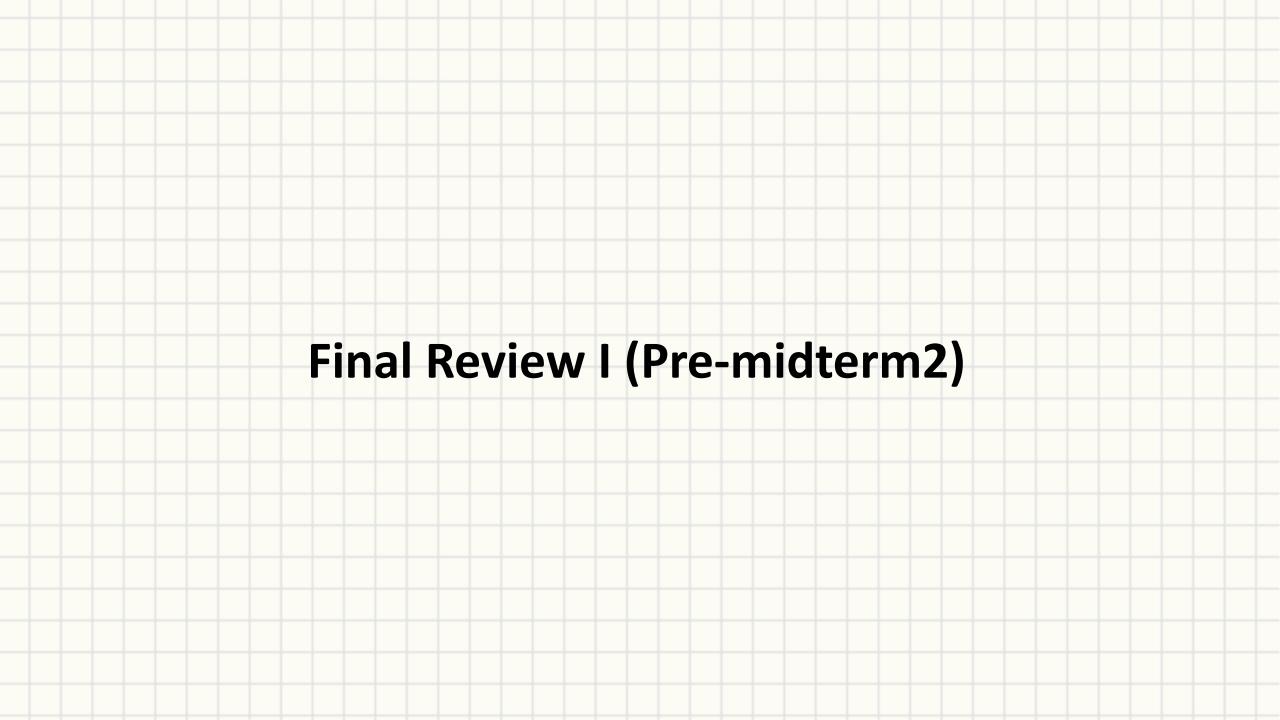
- ECE 418 Image & Video Processing
- ECE 420 / 551 DSP and Advanced DSP
- ECE 438 Communication Networks
- ECE 434 Real-World Algorithms for IoT and Data Science
- ECE 448/449/494 AI/ ML
- ECE 486 / 489 / 515 Control Systems
- ECE 498/598RR Deep Generative Models
- ECE 534 Random Process
- ECE 543 Statistical Learning Theory
- ECE 561 Statistical Inference for Engineers and Data Scientists
- And more...

Probability mindset

- What is the value? → What is the distribution?
 - Always assume a RV, collapse to constant when $\sigma \approx 0$
- Uncertainty is a chance, not a nuisance
 - Model Gaussian, and focus on None-Gaussian
- What distribution would generate observation X?
 - Diffusion, Kalman, Markov model, Likelihood
- When in doubt: model uncertainty explicitly
 - What varies? How does it affect the output

Closing Messages

- Probability isn't a chapter in the textbook—it's the operating system of the real world.
- If there is one habit to carry forward from ECE 313, let it be:
 Whenever something looks uncertain, irregular, or 'noisy'—don't
 guess, don't simplify—model it.
- Great engineers don't eliminate randomness; they understand it, quantify it, and use it.

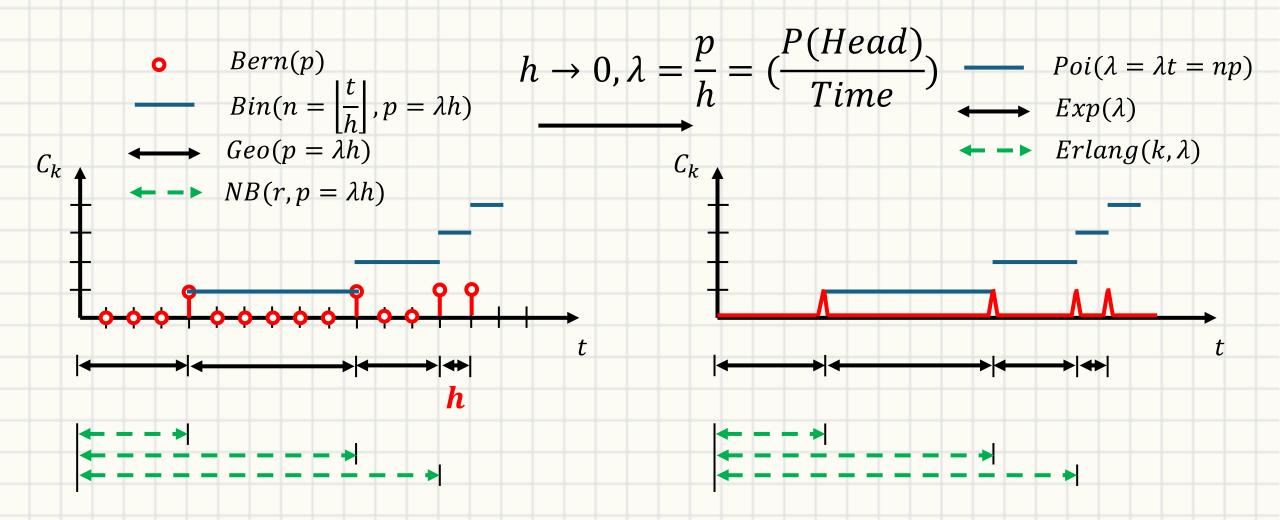


Bernoulli Process

$$h \to 0, \lambda = \frac{p}{h}$$

Poisson Process

Assume each trial takes h duration to complete



Properties

	Bern(p)	Bin(n,p)	$Poi(\lambda = np)$	Geo(p)	NB(r,p)
Def	X_i	$\sum_{n} X_{i}$	$\sum_{n} X_i$, $n \to \infty$	Y_i	$\sum_n Y_i$
μ	p	np	λ	1/p	r/p
σ^2	p(1-p)	np(1-p)	λ	$\frac{1-p}{p^2}$	$\frac{r(1-p)}{p^2}$
$f_X/p_X(k)$	p or $1-p$	$\binom{n}{k} p^k (1-p)^{n-k}$	$\frac{\lambda^k e^{-\lambda}}{k!}$	$(1-p)^{k-1}p$	$\binom{k-1}{r-1}(1-p)^{k-r}p^r$
Special		$(p+q)^n$	$Poi(np) \approx Bin(n,p)$	Memoryless	

Properties

		$Exp(\lambda)$	$Poi(\lambda = \lambda t)$	Uni[a,b]	$N(\mu, \sigma^2)$
	Def	T_i	$\sum_n X_i$, $n o \infty$		
	μ	1/λ	λ	$\frac{a+b}{2}$	μ
	σ^2	$1/\lambda^2$	λ	$\frac{(b-a)^2}{12}$	σ^2
f_2	$p_X/p_X(k)$	$\lambda e^{-\lambda t}$	$\frac{\lambda^k e^{-\lambda}}{k!}$	$\frac{1}{b-a}$	$\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$
S	pecial	Memoryless			$F_N(x) \triangleq \Phi(x)$

Examples – Poisson Process

- Let N_t denotes a Poisson process of rate λ
 - $P\{N_8 = 5 | N_5 N_4 = 3\}$

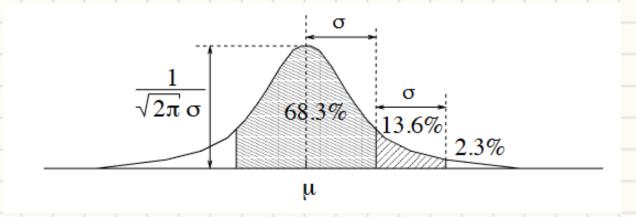
• $P\{N_5 - N_3 = 3 | N_4 - N_2 = 1\}$

Gaussian – Standard Normal

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$Z \sim N(0,1)$$

- $\Phi(u) \triangleq F_Z(u) =$
- $Q(u) = 1 \Phi(u)$



Gaussian – General Gaussian

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$X \sim N(\mu, \sigma^2)$$

•
$$F_X(x) =$$

Binary Hypothesis Testing

- Likelihood matrix/ function
 - $f_i(k) = P\{X = k | H_i\}$
 - Likelihood Ratio $\Lambda(k) = \frac{f_1(k)}{f_0(k)}$ ML method $f_1(k)$ vs. $f_0(k)$ or $\Lambda(k) > 1$?
- Joint Probability Matrix $P(X_iH_i)$
 - MAP method $\Lambda(k) > au_{MAP} = \frac{\pi_0}{\pi_1}$

Example -

Let
$$f_1 \sim N(\mu=1,\sigma^2=2)$$
 and $f_0 \sim N(\mu=0,\sigma^2=1)$

• Find ML rule and MAP rule corresponding P_{miss} , $P_{false\ alarm}$

Wednesday Review Session

- Joint Probability
- Estimators
- Functions of RV