Last lecture

Sum of joint RVs (Ch 4.5)

- Continuous RVs & Examples
- Sum of Gaussians

More examples on joint RVs (Ch 4.6)

- Max of two RVs
- Buffon's needle problems
- Maximum likelihood estimator

Agenda

More examples on joint RVs (Ch 4.6)

- Buffon's needle problems
- Maximum likelihood estimator

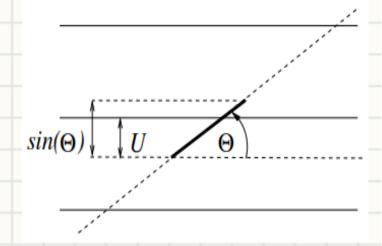
Joint pdfs of functions of RV (Ch 4.7)

- Linear mapping function (Ch 4.7.1)
- One to one/ Multiple to one functions (Ch 4.7.2-3)
 - Will not be tested

Buffon's needle problem

- Draw many parallel horizontal lines
 - Space 1 inch between two lines
 - Throw a needle of 1 inch length on the plane
 - Find P{ "The needle intersect with a line" }

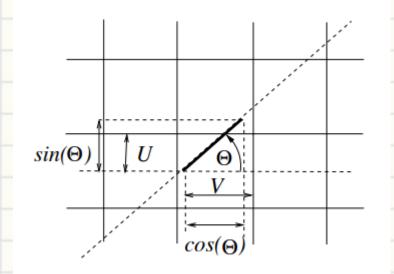
Define U = "distance from the needle lower end to the first line above



Buffon's needle problem (2)

What if there are "horizontal" and "vertical" lines?

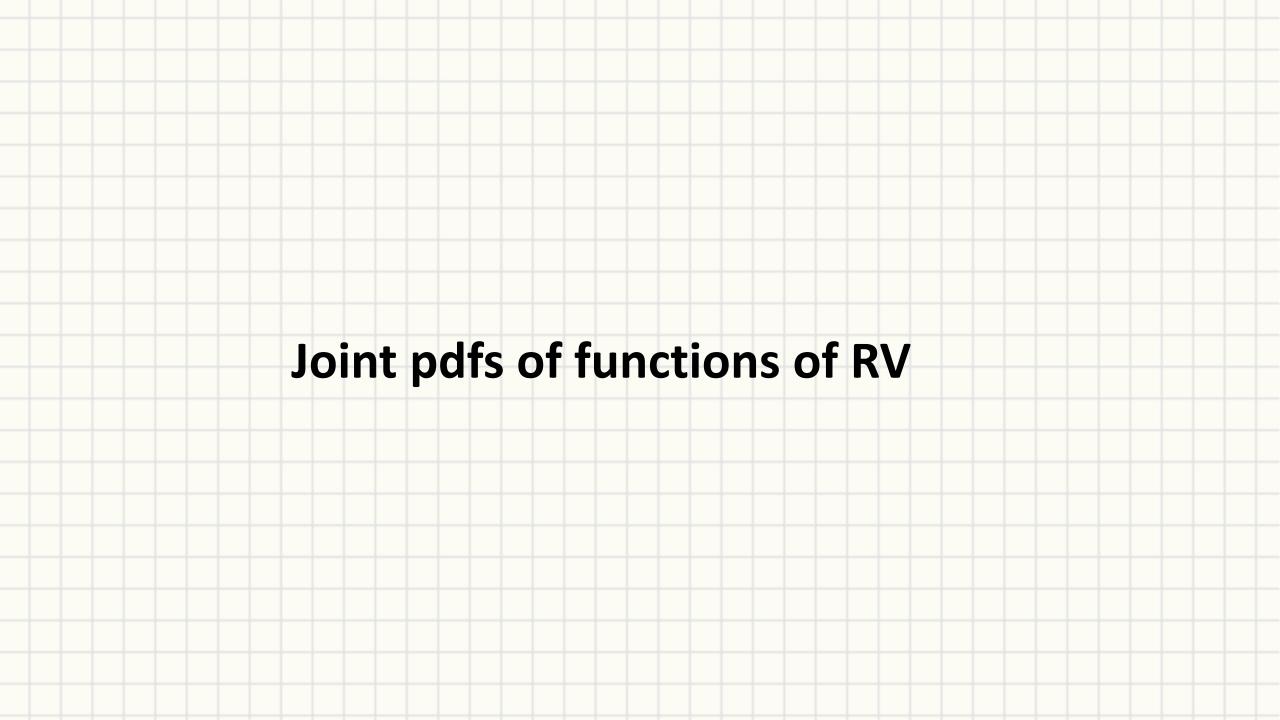
Let M_h denotes "missing horizontal lines" M_v denotes "missing vertical lines"



Maximum Likelihood Estimator

A drone is accelerating constantly with unknown rate

- At time t, the location is bt
- Measurement $X_t = bt + W_t$
 - $W_t \sim N(0,1)$ is the independent random noise
- Given $X_{1:T} = u_{1:T}$ as the observation, find \hat{b}_{ML}
- Is \hat{b}_{ML} unbiased, i.e., $\hat{b}_{ML}(\mu_{1:T}) = b$



Notation and Definition

Denote the point on the plane (X,Y) as a column vector $\begin{pmatrix} X \\ Y \end{pmatrix}$

•
$$f_{X,Y}(u,v)$$
 is denoted as $f_{X,Y}\left(\begin{pmatrix} u \\ v \end{pmatrix}\right)$

Suppose W = aX + bY and Z = cX + dY

•
$$\binom{W}{Z} = A \binom{X}{Y}$$
, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

• For any $\binom{X}{Y}$ in u-v plane, we can find $\binom{W}{Z}$ in $\alpha-\beta$ plane

Determinant and Inverse

$$\binom{W}{Z} = A \binom{X}{Y}$$
, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
• $\binom{\alpha}{\beta} = A \binom{u}{v}$

- det(A) = ad cb. If $det(A) \neq 0$
 - $\alpha \beta$ span a plane

•
$$\binom{u}{v} = A^{-1} \binom{\alpha}{\beta}$$
, where $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

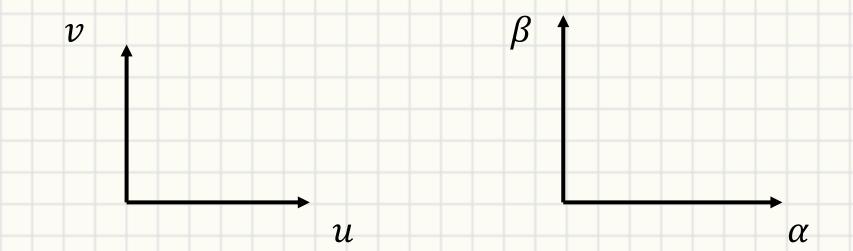
|det(A)| is like "

Joint PDF properties

Suppose
$$\binom{W}{Z} = A \binom{X}{Y}$$
 where $\det(A) \neq 0$
• $f_{W,Z}(\alpha, \beta) = \frac{1}{|\det(A)|} f_{X,Y}(u, v)$

•
$$f_{W,Z}(\alpha,\beta) = \frac{1}{|\det(A)|} f_{X,Y}(u,v)$$

Intuition - W = 2X + Y, Z = X - Y



Example

$$W = X - Y$$
, $Z = X + Y$. Express $f_{W,Z}(\alpha, \beta)$ in terms of $f_{X,Y}$

$$\bullet \quad {W \choose Z} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} {X \choose Y}$$

- Det(A) =
- For $(W, Z) = (\alpha, \beta)$, (X, Y) =
- $f_{W,Z}(\alpha,\beta) =$

Example

Suppose *X* and *Y* are continuous independent RVs.

- W = X + Y, Z = Y
- Find $f_{W,Z}(\alpha,\beta)$ and $f_W(\alpha)$