Last lecture

Independent RV (Ch 4.4)

Examples

Sum of joint RVs (Ch 4.5)

- Motivation
- Discrete RVs & Examples

Agenda

Sum of joint RVs (Ch 4.5)

- Continuous RVs & Examples
- Sum of Gaussians

More examples on joint RVs (Ch 4.6)

- Max of two RVs
- Buffon's needle problems
- Maximum likelihood estimator

Sums of Continuous RVs

Let
$$S = X + Y$$

Let
$$S = X + Y$$

• $F_S(c) = P\{S \le c\} =$

•
$$f_S(c) = \frac{dF_S(c)}{dc} =$$

If X and Y are independent

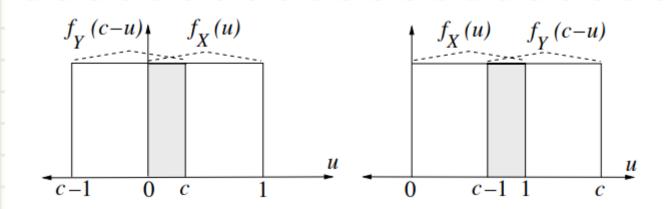
•
$$f_S(c) =$$



Examples

Suppose *X* and *Y* are independent, $X, Y \sim Uniform[0, 1]$. Find the pdf of S = X + Y

- $f_S = f_X * f_Y$
- What is $f_Y(c-u)$?



- If $0 < c \le 1$, $f_X * f_Y =$
- If $1 < c \le 2$, $f_X * f_Y =$

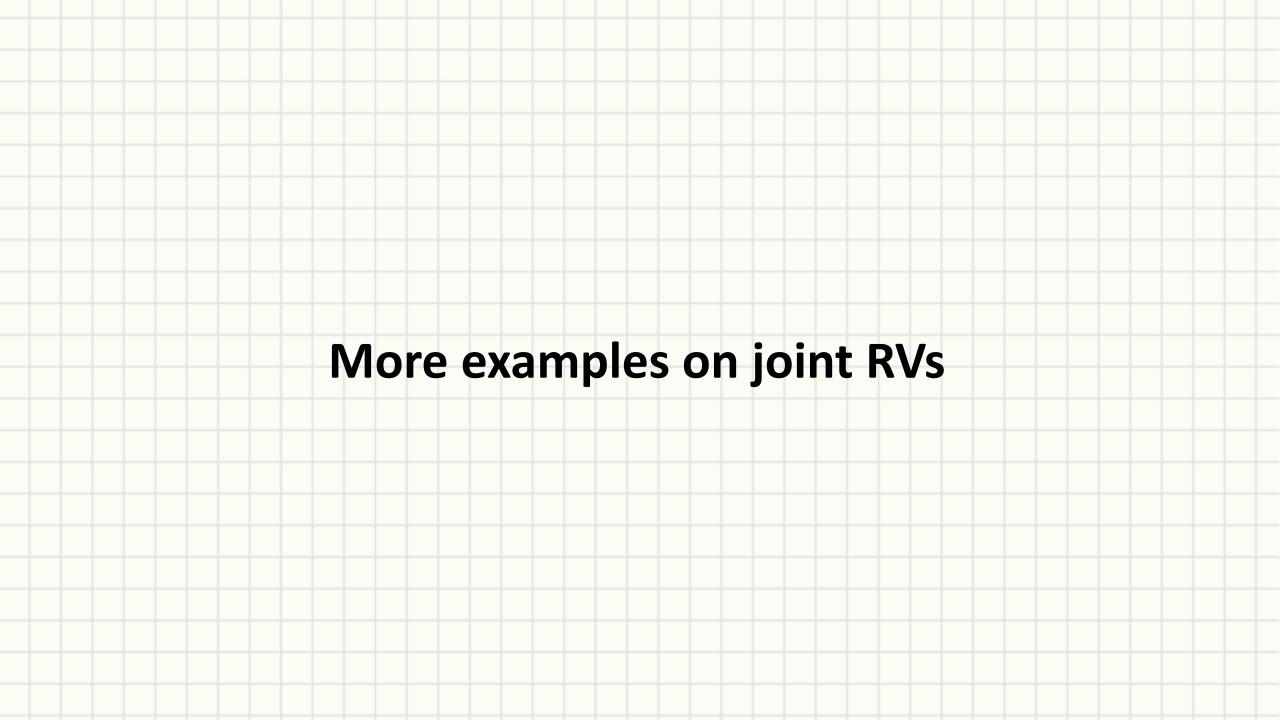
Notes on Gaussian

Assume $X \sim N(0, \sigma_1^2)$, $Y \sim N(0, \sigma_1^2)$

- Sum of two Gaussian of same mean
 - Mean keeps the same

•
$$\sigma_S^2 = \sigma_X^2 + \sigma_Y^2$$

- Tedious proof in textbook formula (4.20)
- But high-level idea approximate by Binomials...



Max of two RVs

Let
$$W = \max(X, Y)$$

•
$$F_W(t) = P\{W \le t\} =$$

•
$$f_W(t) = \frac{dF_W(t)}{dt} =$$

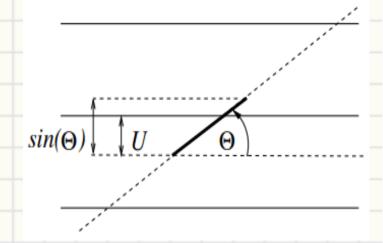
Abstract – on $P\{W \in (t, t+h]\} = f_W(t)h + o(h)$

- Case (a): $Y \le t, X \in (t, t+h]$
- Case (b): $X \le t, Y \in (t, t+h]$
- Case (c): $X \in (t, t + h], Y \in (t, t + h]$

Buffon's needle problem

- Draw many parallel horizontal lines
 - Space 1 inch between two lines
 - Throw a needle of 1 inch length on the plane
 - Find P{ "The needle intersect with a line" }

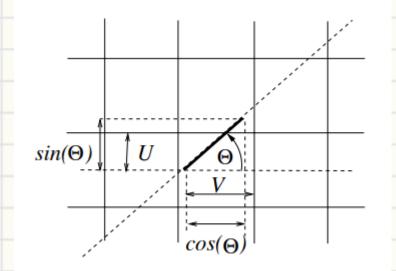
Define U = "distance from the needle lower end to the first line above



Buffon's needle problem (2)

What if there are "horizontal" and "vertical" lines?

Let M_h denotes "missing horizontal lines" M_v denotes "missing vertical lines"



Maximum Likelihood Estimator

A drone is accelerating constantly with unknown rate

- At time t, the location is bt
- Measurement $X_t = bt + W_t$
 - $W_t \sim N(0,1)$ is the independent random noise
- Given $X_{1:T} = u_{1:T}$ as the observation, find \hat{b}_{ML}
- Is \hat{b}_{ML} unbiased, i.e., $\hat{b}_{ML}(\mu_{1:T}) = b$