Last lecture

Joint PDF (Ch 4.3)

- Example
 - Uniform distribution
 - Conditional distribution

Independent RV (Ch 4.4)

- From event to RV CDF
- Check using PDF

Agenda

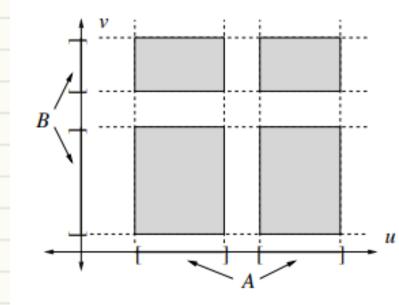
Independent RV (Ch 4.4)

Examples

Product Set

Let A, B denote a finite union of intervals

• |A| denotes the total length of |A|



The product set $A \times B = \{(u, v) : u \in A, v \in B\}$

• The total area $|A \times B| = |A| \times |B|$

Swap property: $S \in \mathbb{R}^2$ has the swap property if

• For any pair of points (a,b), $(c,d) \in S$, (a,d) and (c,b) also in S

Proposition - $S \in \mathbb{R}^2$, S is a product set if and only if it has the swap property

Properties of independent

• If X, Y are independent and jointly continuous type RVs, then support of $f_{X,Y}$ is a product set

• Support X, Y are uniformly distributed over set $S \in \mathbb{R}^2$, then X and Y are independent iif S is a product set

Examples

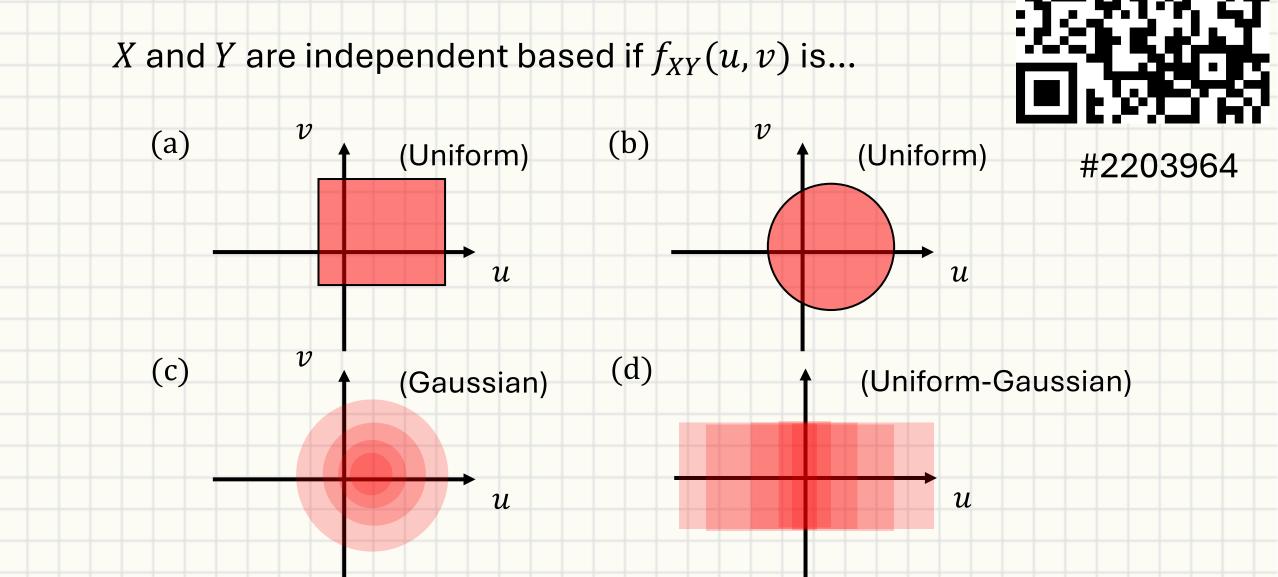
Decide whether the if X and Y are independent if

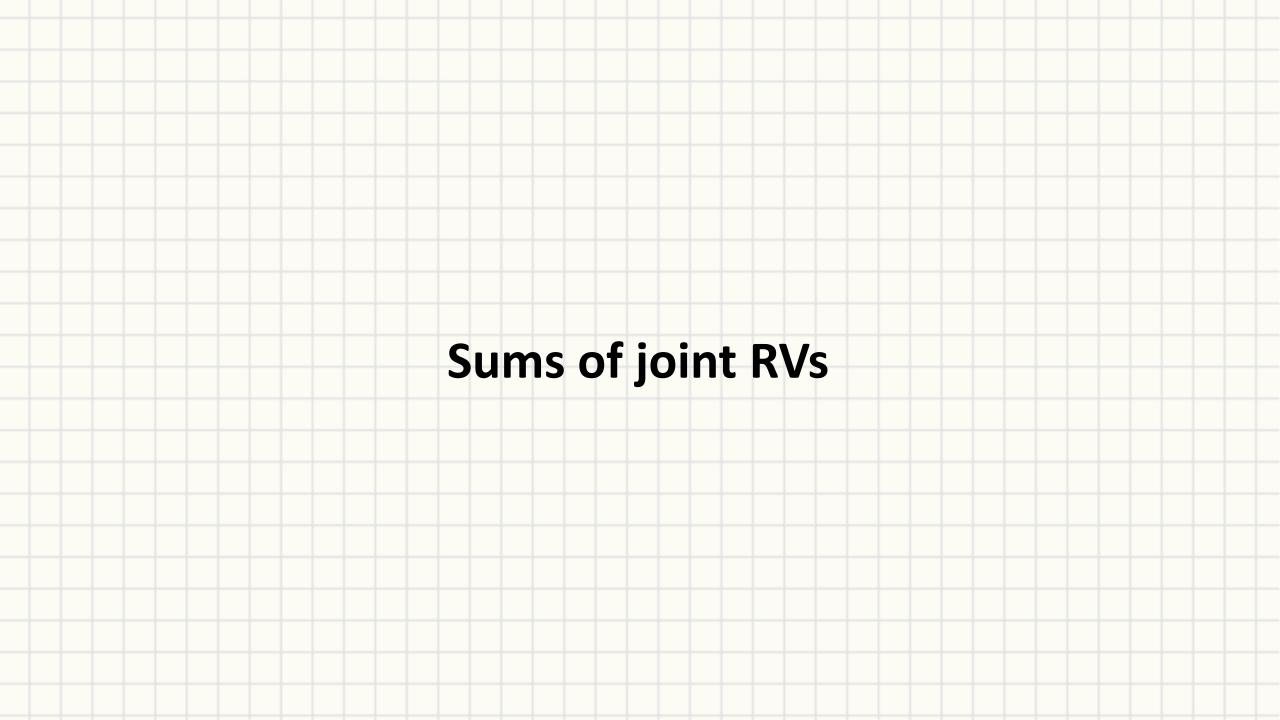
•
$$f_{X,Y}(u,v) = Cu^2v^2$$
 for $u,v > 0$ and $u + v \le 1$; 0 else

•
$$f_{X,Y}(u,v) = u + v \text{ for } u,v \in [0,1]; 0 \text{ else}$$

•
$$f_{X,Y}(u,v) = 9u^2v^2$$
 for $u,v \in [0,1]$; 0 else

Slido





Motivation

Recall, we learnt if X and Y are independent

- E[X + Y] = E[X] + E[Y]
- $\sigma_{X+Y} = \sigma_X + \sigma_Y$

What if we know p_{XY} or f_{XY} ?

- E[X + Y] = E[X] + E[Y] still holds
- What's the sum of your midterm #1 and midterm #2

Sums of Discrete RVs

Let
$$S = X + Y$$

• $p_S(k) =$

If X and Y are independent, $p_{XY}(j, k - j) = p_X(j)p_Y(k - j)$

- $p_S(k) =$
- Denoted as

Example

Let X = Bi(n, p) and Y = Bi(m, p). S = X + Y. Find $p_S(k)$ if X and Y are independent

• Intuitively, X+Y equals "toss a p Head coin

times"

- Verify with formula
- $p_S(k) = \sum_{j=0}^k p_X(j) p_Y(k-j)$

Sums of Continuous RVs

Let
$$S = X + Y$$

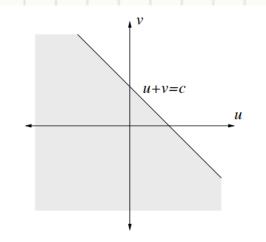
Let
$$S = X + Y$$

• $F_S(c) = P\{S \le c\} =$

•
$$f_S(c) = \frac{dF_S(c)}{dc} =$$

If X and Y are independent

•
$$f_S(c) =$$

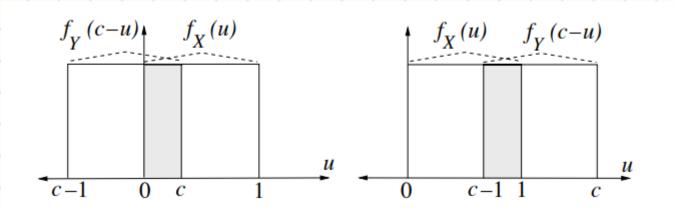


Examples

Suppose X and Y are independent, $X, Y \sim Uniform[0, 1]$. Find the pdf of

$$S = X + Y$$

- $f_S = f_X * f_Y$
- What is $f_Y(c-u)$?



- If $0 < c \le 1$, $f_X * f_Y =$
- If $1 < c \le 2$, $f_X * f_Y =$