Last lecture

Joint PDF (Ch 4.3)

- Example
 - Uniform distribution
 - Conditional distribution

Independent RV (Ch 4.4)

- From event to RV CDF
- Check using PDF

Agenda

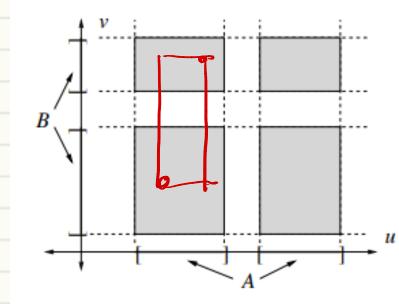
Independent RV (Ch 4.4)

Examples

Product Set

Let A, B denote a finite union of intervals

• |A| denotes the total length of |A|



The product set $A \times B = \{(u, v) : u \in A, v \in B\}$

• The total area $|A \times B| = |A| \times |B|$

Swap property: $S \in \mathbb{R}^2$ has the swap property if

• For any pair of points $(a,b),(c,d) \in S,(a,d)$ and (c,b) also in S

Proposition - $S \in \mathbb{R}^2$, S is a product set if and only if it has the swap property

Properties of independent

• If X, Y are independent and jointly continuous type RVs, then support of $f_{X,Y}$ is a product set

• Support X, Y are uniformly distributed over set $S \in \mathbb{R}^2$, then X and Y are independent if S is a product set

Examples

Formal fx fx fy = Jo $fx = \int_0^{1-u} fxy(u,v) dv.$

Decide whether the if X and Y are independent if

•
$$f_{X,Y}(u,v) = Cu^2v^2$$
 for $u,v>0$ and $u+v\leq 1$; 0 else

•
$$f_{X,Y}(u,v) = u + v$$
 for $u,v \in [0,1]$; 0 else

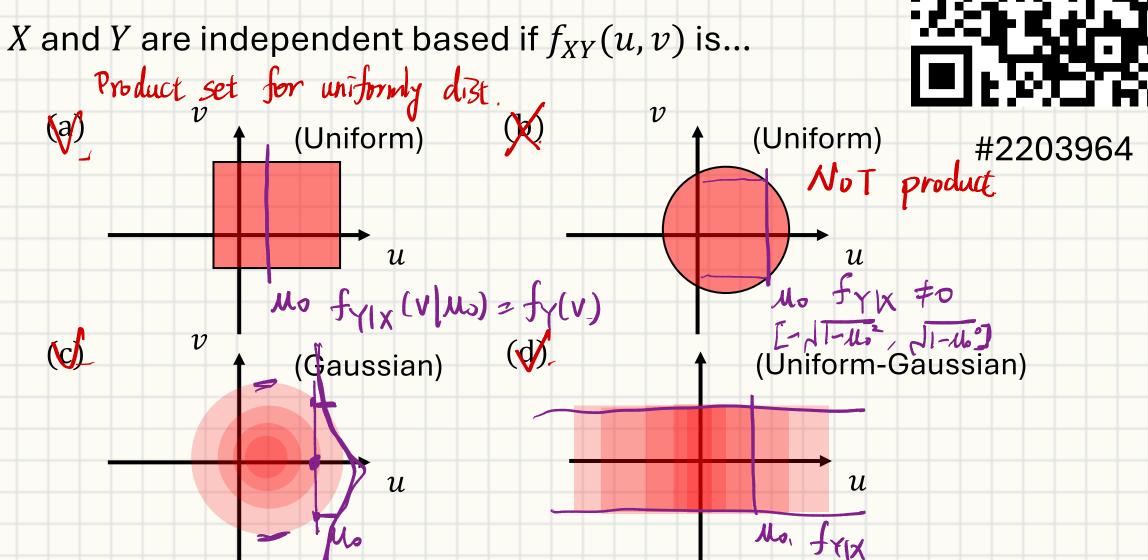
$$f_{X,Y}(u,v) = 9u^2v^2$$
 for $u,v \in [0,1]$; 0 else

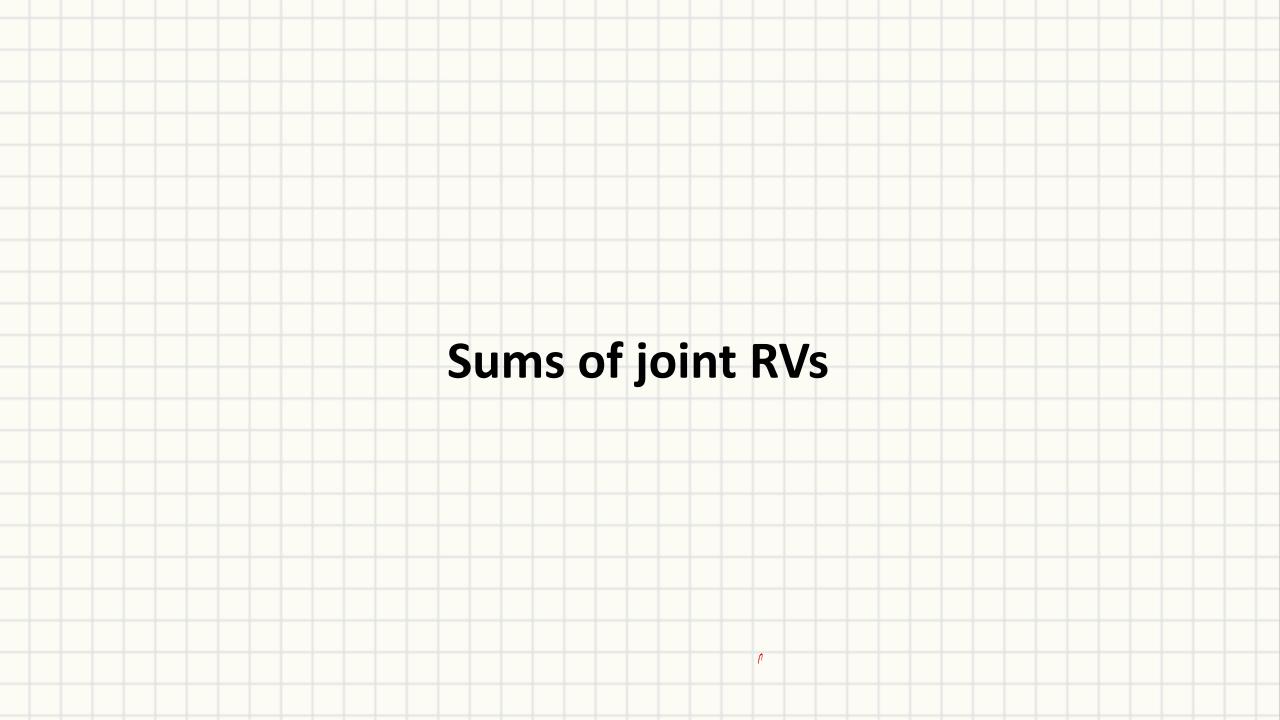
$$f_{X}(u) = \int_{0}^{1} qu^{2}v^{2}dv = 3u^{2}v^{3}\Big|_{0}^{1} = 3u^{2}$$

 $f_{Y}(u) = 3v^{2} \Rightarrow f_{XY} = 3u^{2}x^{3}v^{2} = qu^{2}v^{2}$

 $f_{XY}(u,v) = u+v$, $u,v \in Io, IJ$ $f_{X}(u) = \int_{0}^{1} (u+v) dv = \frac{1}{2} \left[uv + \frac{v^{2}}{2} \right]_{0}^{1}$ = $\mathcal{M}+\frac{1}{2}$ $f_{Y}(V) = Vt \frac{1}{2}$ $f_{XY} \neq f_{X} f_{Y} \qquad (U+\frac{1}{2})(V+\frac{1}{2})$ $u_{Y}(V) = v_{Y}(V) = v_{Y}(V) = v_{Y}(V) = v_{Y}(V)$ 37 X & Tare NOT independent,

Slido





Motivation

Recall, we learnt if X and Y are independent

- E[X + Y] = E[X] + E[Y]• $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$

What if we know p_{XY} or f_{XY} ?

- E[X + Y] = E[X] + E[Y] still holds
- What's the sum of your midterm #1 and midterm #2

Sums of Discrete RVs

Let
$$S = X + Y$$

• $p_S(k) = \sum_{j} P_{XY}(j, k-j)$
Ly X outcome

If X and Y are independent, $p_{XY}(j, k - j) = p_X(j)p_Y(k - j)$

•
$$p_S(k) = \sum_{j} P_X(j) P_Y(k-j) = P_X + P_Y$$

Denoted as convolution

$$P_{S}(k) = \sum_{j} P_{X}(j) P_{Y}(-k-2j)$$

 $S = 2X-Y$. $Y_{2} S-2X$.

Let X = Bi(n, p) and Y = Bi(m, p). S = X + Y. Find $p_S(k)$ if X and Y are independent

- Intuitively, X + Y equals "toss a p Head coin M+N, times" $S \sim Bi(M+N,p)$
- Verify with formula

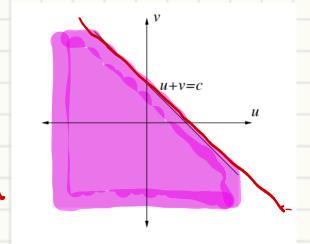
•
$$p_{S}(k) = \sum_{j=0}^{k} p_{X}(j) p_{Y}(k-j)$$

= $\sum_{j=0}^{k} {n \choose j} P^{j} {l-p}^{n-j} {m \choose k-j} P^{k-j} {l-p}$

Sums of Continuous RVs

Let
$$S = X + Y$$

• $F_S(c) = P\{S \le c\} = \int_{-\infty}^{\infty} \int_{-\infty}^{C-M} \int_{-\infty}^{\infty} \int$



•
$$f_S(c) = \frac{dF_S(c)}{dc} = 2$$
 f_{XY}

If X and Y are independent

•
$$f_S(c) =$$