Last lecture

Generating a customized RV (Ch 3.8.2)

- Intuition $g = F_X^{-1}$
- Examples
 - Uniform to Exponential
 - Uniform to D6 outcome
- Area rule Compute E[X] using F_X (Ch 3.8.3)

Binary Hypothesis Testing with continuous distribution (Ch 3.10)

Overview

Agenda

Binary Hypothesis Testing with continuous distribution (Ch 3.10)

Example

Jointly Distributed RV/ Joint CDF (Ch 4.1)

- Motivation
- Definition
- Properties

Joint PMF (Ch 4.2)

- Definition
- Example

Overview

Similar to discrete, but with some changes

•
$$P\{X = u | H_1\} \to f_1(u)$$

•
$$P\{X=u|H_1\} \rightarrow f_1(u)$$

• Likelihood Ratio $\Lambda(u)=\frac{f_1(u)}{f_2(u)}$

• LRT rule
$$\Lambda(X)$$
 $\begin{cases} > au & H_1 \\ < au & H_0 \end{cases}$

 $p_{false\ alarm}, p_{miss}, p_e$ remain the same

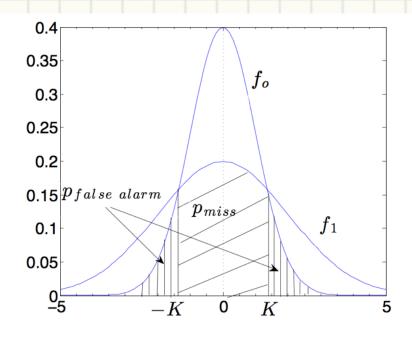
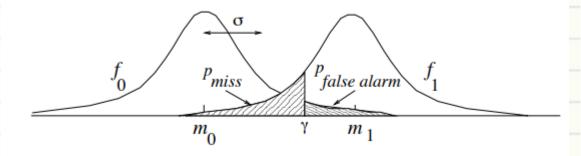


Figure 3.27: N(0,1) and N(0,4) pdfs and ML threshold K.

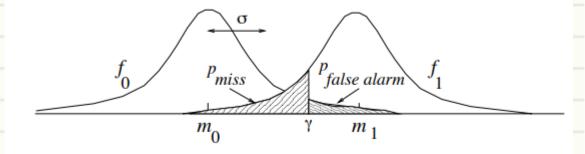


X under H_i follows $N(m_i, \sigma^2)$. Given m_i, σ, π_i , Find ML and MAP rule

•
$$f_i(u) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(u-m_i)^2}{2\sigma^2}\right\}$$

• $\Lambda(u) = \exp\{(u - \frac{m_0 + m_1}{2})(\frac{m_1 - m_0}{\sigma^2})\}$
• ML rule –

•
$$\Lambda(u) = \exp\{(u - \frac{m_0 + m_1}{2})(\frac{m_1 - m_0}{\sigma^2})\}$$

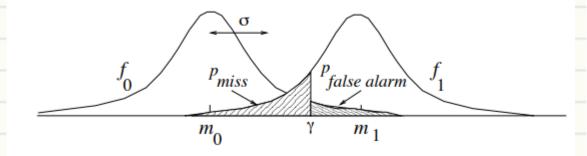


X under H_i follows $N(m_i, \sigma^2)$. Given m_i, σ, π_i , Find ML and MAP rule

•
$$f_i(u) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(u-m_i)^2}{2\sigma^2}\right\}$$

• $\Lambda(u) = \exp\{(u - \frac{m_0 + m_1}{2})(\frac{m_1 - m_0}{\sigma^2})\}$
• MAP rule –

•
$$\Lambda(u) = \exp\{(u - \frac{m_0 + m_1}{2})(\frac{m_1 - m_0}{\sigma^2})\}$$



X under H_i follows $N(m_i, \sigma^2)$. Given m_i, σ, π_i , Find ML and MAP rule

•
$$f_i(u) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(u-m_i)^2}{2\sigma^2}\right\}$$

• $\Lambda(u) = \exp\{(u - \frac{m_0 + m_1}{2})(\frac{m_1 - m_0}{\sigma^2})\}$
• $P_{miss} =$

•
$$\Lambda(u) = \exp\{(u - \frac{m_0 + m_1}{2})(\frac{m_1 - m_0}{\sigma^2})\}$$

$$\bullet$$
 $P_{miss} =$

•
$$P_{false\ alarm} =$$

Jointly Distributed Random Variables

Motivation

Given X and Y, we have learnt

- Independence
- Function & Scaling (e.g. X=3Y-2)

But real-world cases are more complex

- How to show the "
- "Jointly distributed" RVs
- $F_X(u) \rightarrow F_{X,Y}(u,v)$
- $P_X(u) \rightarrow P_{X,Y}(u,v)$

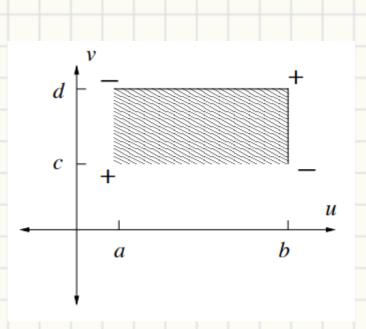
" between X and Y

Joint CDF

Joint CDF of X and Y

- $F_{X,Y}(u,v) = P\{X < u, Y < v\}$ for any $(u,v) \in \mathbb{R}^2$
- Completely defines all events concerning X and Y
- For a 2D rectangle region $R = (a, b] \times (c, d]$
 - $P\{(X,Y) \in R\} =$

•
$$F_X(u) = F_{X,Y}(u, \infty)$$

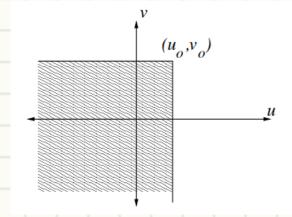


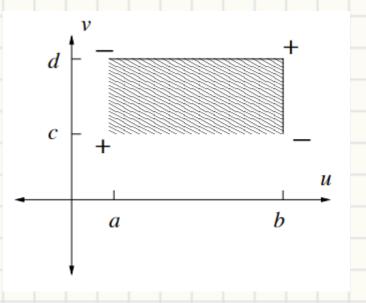
 (u_{o},v_{o})

Joint CDF Properties

Denote $F_{X,Y}$ as F

- $0 \le F(u, v) \le 1$ for all $(u, v) \in \mathbb{R}^2$
- along u and along v respectively
 - *F* is none decreasing
 - *F* is right-continuous
- $\lim_{u\to-\infty} F(u,v)=0$
- $\lim_{u \to \infty} \lim_{v \to \infty} F(u, v) = 0$





Joint PMF

If X and Y are discrete, joint PMF $p_{X,Y}(u,v) = P\{X = u, Y = v\}$

Marginalization

- Getting single RV PMF/ PDF from joint PMF/ PDF
- $p_X(u) = \sum_{v_j} p_{X,Y}(u, v_j)$ called "marginal PMF"

Conditional PMF

•
$$p_{Y|X}(v|u_0) = \frac{p_{X,Y}(u_0,v)}{p_X(u_0)}$$

Given joint PMF $p_{X,Y}$ as the table, find

- p_X
- ullet p_Y
- $\bullet \quad P\{X=Y\}$
- $P\{X > Y\}$
- $p_{Y|X}(v|2)$

Y=1	X = 1	0.3 $X = 2$	0.1 $X = 3$
Y=2		0.2	0.2
Y = 3	0.1	0.1	