

Figure 2.6: Depiction of a sample path of a Bernoulli process.

- 4 OF TRIALS NEEDED UNTIL THE OUTCOME OF A TRIAL IS ONE
- 4 ~ GEOMETRIC (P)
- 4 TRIAL 15 ONE.
- ← GEOMETRIC (Þ)

 A GEOMETRIC (Þ)

 A
- Ly : # OF TRIALS NEEDED AFTER THE FIRST LI + L2+... + L3_1 TRIALS, UNTIL

 THE OUTCOME OF A TRIAL IS ONE.
- LI, L2, ..., Lj, ... INDEPENDENT RVS EACH FOLLOWING GEOMETRIC (P)
- NOTE THAT THE VARIABLES LI, L2, ..., L3, ... ARE DETERMINED BY X1, X2, ..., X3, ...

AND VICE - VERSA!

WE HAVE TWO MORE WAYS TO DESCRIBE THE BERNOULLI RANDOM PROCESS.

THE VERY FIRST ONE, UNTIL A TOTAL

OF J TRIALS HAVE OUTCOME ONE

- 6; = 6, + 6, + 4 by j > 1
- 4150, = 5j 5j-1 WITH So = 0
- 5) ~ NEGATIVE BINOMIAL (), p)
- CK : CUMULATIVE # OF ONES IN THE FIRST & TRIALS
- $C_{R} = X_{1} + X_{2} + \cdots + X_{R} \qquad R > 1$
- ALSO, Xk = Ck CK-1 WITH Co = 0
- CR ~ BINOMIAL (R, P)

LET h70 , WITH h REPRESENTING BERNOULLI PROCESS DISCUSSED ABOVE. RECALL BERNOULLI PROCESS TIME . SUPPOSE EACH TRIAL THE IN TAKES h AMOUNT UNITS PERFORM , A TIME- SCALED BERNOULLI RANDOM PROCESS TRACKS REFER TO THE FOLLOWING FIGURE: TIME . COUNTS VERSUS THE OF

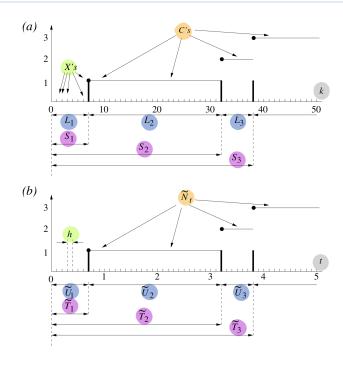


Figure 3.8: (a) A sample path of a Bernoulli process and (b) the associated time-scaled sample path of the time-scaled Bernoulli process, for h=0.1.

LET λ IS FIXED AND h IS SO SMALL THAT $p = \lambda h$ IS MUCH SMALLER THAN 1

WE CAN APPROXIMATE THE SCALED-BERNOULLI PROCESS AS FOLLOWS:

GEOMETRIC (b)

Lj ~ Geometric (b)

WHY? hLj ~ CONT. ANALOG OF GEOMETRIC

AND SCALED VERSION OF Lj , NAMELY \widetilde{U}_j = hLj ~ EXPONENTIAL ($\lambda = P/h$)

. t FIXED , Nt ; SUM OF L+/hJ BERNOULLI (b) RVS

> Nt ~ BINDMIAL (Lt/h 1, p= 2h)

RECALL THAT AS $n \to \infty$ AND $p \to 0$ WITH $np \to \lambda$

 $\frac{\text{BINOMIAL}}{\text{POISSON}}(\lambda)$

THINK ABOUT IT! $L^{t/n} \rightarrow \infty$ $[t/n] \rightarrow \lambda t$ AS $h \rightarrow 0$, $\tilde{N}_{t} \rightarrow POISSON (\lambda t)$

MORE GENERALLY, IF 0 4 5 < t, THEN

 \widetilde{N}_{t} - \widetilde{N}_{s} \longrightarrow POISSON ($\lambda(t-s)$) INDEPENDENTLY

GIVEN (, F P) A SAMPLE PATH OF A POISSON PROCESS (i.e., THE FUNCTION OF

TIME THE PROCESS YIELDS FOR SOME PARTICULAR () () IS SHOWIN IN THE

FOLLOWING FIGURE:



Figure 3.9: A sample path of a Poisson process.

- . tzo , Nt : CUMULATIVE # OF COUNTS UPTO TIME t
- · T, T2, ... : COUNT TIMES
- . U1 , U2 , ... : INTER COUNT TIMES

$$N_{t} = \sum_{n=1}^{\infty} I_{\{t>T_{n}\}}$$
 WHERE $I_{A} = \begin{cases} I, & A \text{ TRUE}, \\ 0, & \text{otherwise} \end{cases}$

$$T_{\gamma 1} = MIN \{t: N_{t} > \gamma 1\}$$

$$T_n = U_1 + U_2 + \cdots + U_n$$

- LET $\lambda > 0$. A POISSON PROCESS WITH RATE λ IS A RANDOM COUNTING PROCESS
- N = (Nt : + 70) SUCH THAT
- N.1 N HAS INDEP. INCREMENTS: IF $0 \le t_0 \le t_1 \le ... \le t_n$, THE INCREMENTS $N_1 N_{t_0}$, $N_{t_2} N_{t_1}$, ..., $N_{t_m} N_{t_{m-1}}$ ARE INDEPENDENT.
- N.2 THE INCREMENT Nt NS HAS THE POISSON (7 (t-8)) DISTRIBUTION FOR t > 8.
- PROPOSITION: LET N BE A RANDOM COUNTING PROCESS AND LET 270. THE FOLLOWING

 ARE EQUIVALENT:
- (a) N IS A POISSON PROCESS WITH RATE A.
- (b) THE INTERCOUNT TIMES $U_1, U_2, ...$, ARE MUTUALLY INDEP., EXPONENTIALLY DISTRIBUTED

 RVS WITH PARAMETER λ .