Fall 2022

ECE 313: Problem Set 7: Problems and Solutions

1. Let U_{n} denote the time it took to finish the nth round. We have $U_{n} \sim \exp (\lambda)$. Let $T=U_{1}+U_{2}+\cdots+U_{10}$. T has Erlang distribution with parameter $(10, \lambda)$. Our observation is $T=5$. We want to pick $\lambda>0$ so that $f_{T}(5)$ is maximized:

$$
\hat{\lambda}_{M L}=\underset{\lambda>0}{\arg \max } f_{T}(5)=\underset{\lambda>0}{\arg \max } \frac{\lambda e^{-5 \lambda}(5 \lambda)^{9}}{9!}
$$

We need to solve

$$
\frac{d f_{T}(5)}{d \lambda}=0 \Longrightarrow(-5) e^{-5 \lambda} \lambda^{10}+10 \lambda^{9} e^{-5 \lambda}=0 \Longrightarrow-5 \lambda+10=0 \Longrightarrow \hat{\lambda}_{M L}=2
$$

2. Let X denote the number of refunds that are issued.
(a) $P(X \geq 6)=\sum_{k \geq 6}\binom{n}{k} p^{k}(1-p)^{n-k}=1-\sum_{k \leq 5}\binom{10^{6}}{k}\left(2 \cdot 10^{-6}\right)^{k}\left(1-2 \cdot 10^{-6}\right)^{10^{6}-k}$
(b) By Markov inequality

$$
P(X \geq 6) \leq \frac{E[X]}{6}=\frac{n p}{6}=\frac{1}{3}
$$

(c) By Chebyshev's inequality

$$
P(|X-n p| \geq a \sigma) \leq \frac{1}{a^{2}}
$$

Notice that $n p=2 \cdot 10^{-6} \cdot 10^{6}=2$ and $\sigma=\sqrt{n p(1-p)} \approx \sqrt{2}$. Hence if we pick $a=4 / \sqrt{2}$, we get

$$
P(|X-2| \geq 4) \leq\left(\frac{\sqrt{2}}{4}\right)^{2}
$$

Notice that if $|X-2| \geq 4$ then $X \geq 6$ or $X \leq-2$; however X is non-negative. Hence,

$$
P(X \geq 6)=P(|X-2| \geq 4) \leq \frac{1}{8}
$$

which is much sharper.
(d) Let $\lambda=n p=2$. We have

$$
P(X \geq 6)=1-P(X \leq 5) \approx 1-\sum_{k=0}^{5} \frac{e^{-2} 2^{k}}{k!}
$$

(e) Notice that $\mu=n p=2$ and $\sigma=\sqrt{n p(1-p)} \approx \sqrt{2}$. Let \widetilde{X} denote the normal approximation.

$$
P(X \geq 6) \approx P(\tilde{X} \geq 5.5)=P\left(\frac{\tilde{X}-2}{\sqrt{2}} \geq \frac{5.5-2}{\sqrt{2}}\right)=Q\left(\frac{5.5-2}{\sqrt{2}}\right)=1-\Phi\left(\frac{3.5}{\sqrt{2}}\right)
$$

(f) We observe $X=20$. Notice that $P(X=20) \approx P(\widetilde{X} \leq 20.5)-P(\tilde{X} \leq 19.5)$ where $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \mu=$ $n p$ and $\sigma=\sqrt{n p(1-p)} \approx \sqrt{n p}=\sqrt{\mu}$. Hence $\widetilde{X} \sim \mathcal{N}(\mu, \mu)$. We can pick μ that maximizes right hand side and then set $\hat{P}_{M L}=\hat{\mu}_{M L} \cdot 10^{-6}$.

$$
\underset{\mu>0}{\arg \max } P(\tilde{X} \leq 20.5)-P(\tilde{X} \leq 19.5)=\underset{\mu>0}{\arg \max } \Phi\left(\frac{20.5-\mu}{\sqrt{\mu}}\right)-\Phi\left(\frac{19.5-\mu}{\sqrt{\mu}}\right)
$$

Taking derivative and setting it to be zero, we get

$$
\begin{aligned}
& \left(-\frac{20.5 \mu^{-\frac{3}{2}}}{2}-\frac{\mu^{-\frac{1}{2}}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(20.5-\mu)^{2}}{2 \mu}\right)-\left(-\frac{19.5 \mu^{-\frac{3}{2}}}{2}-\frac{\mu^{-\frac{1}{2}}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(19.5-\mu)^{2}}{2 \mu}\right)=0 \\
& \Longrightarrow\left(\frac{20.5}{\mu}+1\right) \exp \left(-\frac{(20.5-\mu)^{2}}{2 \mu}\right)-\left(\frac{19.5}{\mu}+1\right) \exp \left(-\frac{(19.5-\mu)^{2}}{2 \mu}\right)=0 \\
& \Longrightarrow \frac{\mu+20.5}{\mu+29.5}=\exp \left[\frac{1}{2 \mu}\left((20.5-\mu)^{2}-(19.5-\mu)^{2}\right)\right]=\exp \left[\frac{1}{2 \mu}(40-2 \mu)\right] \\
& \Longrightarrow \hat{\mu}_{M L} \approx 19.5062 \\
& \Longrightarrow \hat{p}_{M L}=10^{-6} \cdot 19.5062
\end{aligned}
$$

3.

(a) $P(X \geq 50)=\Phi\left(-\frac{50-\mu}{\sigma}\right)=\Phi\left(-\frac{50-39.1}{5}\right)$
(b) $P(30 \leq X \leq 50)=P(X \geq 30)-P(X \geq 50)=\Phi\left(-\frac{30-39.1}{5}\right)-\Phi\left(-\frac{50-39.1}{5}\right)$
(c) We need to pick k so that $P(X \geq k)=0.9$, which means $\Phi\left(-\frac{k-39.1}{5}\right) \approx 0.9$.

