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1. [Estimation]

(a) Solution: To solve for c, we use

∫ ∫
fX,Y (x, y) dxdy = 1.

1 =

∫ 1/2

0

∫ 1/2

0

c (x+ y) dxdy =
c

8
=⇒ c = 8.

(b) Solution: We can calculate the marginal distribution fX and the conditional distribution fY |X
as follows.

fX (x) =

∫ 1/2

0

8 (x+ y) dy = 1 + 4x

fY |X (y|x) = fX,Y (x, y)

fX (x)
=

8 (x+ y)

1 + 4x
, x, y ∈

[
0,

1

2

]
By the definition of the unconstrained estimator g∗,

g∗ (u0) = E [Y |X = u0] =

∫
yfY |X (y|u0) dy =

∫
y · 8 (u0 + y)

1 + 4u0
dy =

3u0 + 1

3 + 12u0

(c) Solution: From the lecture, we know that the linear estimator is given by:

L∗ (u0) = E [Y ] +
Cov (X,Y )

Var (X)
(u0 − E [X])

Since X,Y are symmetric in fX,Y , E [X] = E [Y ] and Var (X) = Var (Y ).

E [X] =

∫ 1/2

0

x (1 + 4x) dx =
7

24

Var (X) = E
[
X2

]
− (E [X])

2
=

11

576

E [XY ] =

∫ ∫
xyfX,Y (x, y) dxdy =

1

12

Cov (X,Y ) = E [XY ]− E [X]E [Y ] = − 1

576

Plugging in the values yields L∗ (u0) =
1
11

(
7
2 − u0

)
.

2. [Gaussian random variables]

(a) Solution: Using the bi-linearity of covariance,

Cov (X − Y, 2X + 3Y − 1) = 2Var (X) + Cov (X,Y )− 3Var (Y )

Since X,Y are independent, Cov (X,Y ) = 0 and hence Cov (X − Y, 2X + 3Y − 1) = −1.

(b) Solution: We use the fact that linear combinations of independent Gaussian random variables
are also Gaussian. It is easy to see that E [2X + Y ] = 0, and

Var (2X + Y ) = Cov (2X + Y, 2X + Y ) = 4Var (X) + 4Cov (X,Y ) + Var (Y ) = 5

This shows that 2X + Y ∼ N (0, 5) and

P (2X + Y ≥ 1) = P

(
2X + Y√

5
≥ 1√

5

)
= Q

(
1√
5

)
.



(c) Solution: Similarly, X − Y ∼ N (0, 2) since E [X − Y ] = 0 and

Var (X − Y ) = Var (X)− 2Cov (X,Y ) + Var (Y ) = 2

Then since P (X − Y > a) = P (X − Y < −a) for a > 0 by symmetry, we have

P
(
(X − Y )

2
> 4

)
= 2P (X − Y > 2) = 2P

(
X − Y√

2
>

√
2

)
= 2Q

(√
2
)

3. [Gaussian Random variables and Estimation]

(a) Solution: Using the linearity of expectation and bi-linearity of covariance, we get

E [W ] = E [2X + Y − 1] = 2E [X] + E [Y ]− 1 = 0

Var (W ) = Cov (2X + Y − 1, 2X + Y − 1) = 4Var (X) + 4Cov (X,Y ) + Var (Y ) = 37

Here we use Cov (X,Y ) = ρ σXσY = 3.

(b) Solution: First, observe that W,Y are also jointly Gaussian since W is a linear combination of
jointly Gaussian X,Y . From the lecture, we know that the best mean square error estimator for
jointly Gaussian random variables is the linear MSE, i.e.

g∗ (w0) = E [Y ] +
Cov (W,Y )

Var (W )
(w0 − E [W ])

Since Cov (W,Y ) = Cov (2X + Y − 1, Y ) = 2Cov (X,Y ) + Var (Y ) = 15, g∗ (w0) = −1 + 15
37w0,

and the resulting MSE is

E
[
(Y − g∗ (W ))

2]
= Var [Y ]

(
1− ρ2W,Y

)
=

9 · 12
37

4. [LLN]

Solution: Let Y = Sn

n − µ. It is easy to check that E [Y ] = 0 and Var (Y ) = σ2

n . Since Y is a linear

combination of i.i.d. Gaussian R.V.’s, Y is also Gaussian, i.e. Y ∼ N
(
0, σ2

n

)
. So we have

P (|Y | ≥ ϵ) = P

(
|Y |

σ/
√
n
≥ ϵ

σ/
√
n

)
= 2Q

(
ϵ
√
n

σ

)
Let X ∼ N (0, 1), and for an interval I denote 1I be the function defined as

1I (x) =

{
1 x ∈ I

0 otherwise

To prove the limit,

lim
n→∞

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ϵ

)
= lim

n→∞
Q

(
ϵ
√
n

σ

)
= lim

n→∞

∫ ∞

ϵ
√

n
σ

fX (x) dx

= lim
n→∞

∫ ∞

−∞
1[ ϵ

√
n

σ ,∞) (x) fX (x) dx

= lim
n→∞

∫ ∞

−∞
1(−∞,x]

(
ϵ
√
n

σ

)
fX (x) dx

=

∫ ∞

−∞
lim
n→∞

1(−∞,x]

(
ϵ
√
n

σ

)
fX (x) dx

2



Since lim
n→∞

1(−∞,x]

(
ϵ
√
n

σ

)
= 0 for a fixed x, it follows

lim
n→∞

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ϵ

)
=

∫ ∞

−∞
0 · fX (x) dx = 0

Alternatively, we can use Chebyshev’s inequality to get the upper bound

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ϵ

)
≤ σ2/n

ϵ2

Since ϵ, σ are fixed, taking the limit on the both sides proves P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ϵ

)
→ 0 as n → ∞.
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