ECE 313: Final Exam

Monday, Dec 12, 2022

1. [5 points] Recall the first problem in Fall 2022 midterm 2. Let X be a non-negative continuous random variable such that $P(X>x+y \mid X>y)=P(X>x)$ for all $x \geq 0$ and all $y \geq 0$. It was shown that $P(X>n)=(P(X>1))^{n}$ for every positive integer n. Suppose that $P(X>3)<\frac{1}{8}$. True or False: $P\left(X>\frac{1}{2}\right)<\frac{1}{\sqrt{2}}$. Justify your answer.
Note: X is an exponential random variable. Nevertheless, this observation should not be used in your proof.
Solution: By the midterm 2 solution, the memory-less property can be equivalently written as

$$
P(X>x+y)=P(X>x) P(X>y), \quad \forall x \geq 0 \text { and } \forall y \geq 0 .
$$

For $x=y=\frac{1}{2}, \sqrt[3]{P(X>3)}=P(X>1)=\left(P\left(X>\frac{1}{2}\right)\right)^{2}$ or $P\left(X>\frac{1}{2}\right)<\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$.
2. [8 points] Suppose that we have a five-sided die with equiprobable sides labeled $\{1,2,3,4,5\}$ and a three-sided die with equiprobable sides labeled $\{1,3,5\}$. We run the following experiment:

- Roll 1: we roll the five-sided die.
- Roll 2: if the result of the first roll is odd, then we roll the five-sided die. Otherwise, we roll the three-sided die.
- Roll 3: if the sum of the first two rolls is odd, we roll the five-sided die. Otherwise, we roll the three-sided die.
- Roll 4: if the sum of the first three rolls is odd, we roll the five-sided die. Otherwise, we roll the three-sided die.

We get four numbers as the result of the above experiment.
(a) [4 points] Let X denote the number of times we have rolled the three-sided die. Find the pmf of X.
Solution: Note that we won't roll the three-sided die twice in a row; hence, possible values of X are $0,1,2$.

$$
\begin{aligned}
& p_{X}(0)=P(X=0)=\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)^{2}=\frac{12}{125} \\
& p_{X}(2)=P(X=2)=\left(\frac{2}{5}\right)(1)\left(\frac{3}{5}\right)=\frac{30}{125} \\
& p_{X}(1)=P(X=1)=1-\frac{12}{125}-\frac{30}{125}=\frac{83}{125}
\end{aligned}
$$

(b) [4 points] Let Y denote the number of times we have rolled the five-sided die. Find $E\left[X^{3}\right]$ and $P\left(X^{2} \geq 1 \mid Y \geq 1\right)$.

Solution:
$E\left[X^{3}\right]=0^{3} \cdot p_{x}(0)+1^{3} \cdot p_{x}(1)+2^{3} \cdot p_{x}(2)=\frac{323}{125}$
$P\left(X^{2} \geq 1 \mid Y \geq 1\right)=P(X \geq 1)=1-\frac{12}{125}=\frac{113}{125}$
3. [7 points] Let X, Y be two non-negative random variables such that $\mu_{X}=E[X]=E[Y]=$ $\mu_{Y}=2, \sigma_{X}^{2}=\operatorname{Var}(X)=\sigma_{Y}^{2}=\operatorname{Var}(Y)=1$. Using Markov, Chebyshev and Cauchy-Schwarz inequalities, justify your answer for the following:
(a) [4 points] True or False: $P(X Y \geq 10) \leq \frac{1}{2}$.

Solution: $P(X Y \geq 10) \leq \frac{E[X Y]}{10} \leq \frac{\sqrt{E\left[X^{2}\right] E\left[Y^{2}\right]}}{10}=\frac{\sqrt{\left(\mu_{X}^{2}+\sigma_{X}^{2}\right)\left(\mu_{Y}^{2}+\sigma_{Y}^{2}\right)}}{10}=\frac{1}{2}$.
(b) [3 points] True or False: $P(X \geq 6) \leq \frac{1}{16}$.

Solution: $P(X \geq 6)=P(X-2 \geq 4) \leq P(|X-2| \geq 4) \leq \frac{\sigma_{X}^{2}}{4^{2}}=\frac{1}{16}$.
4. [7 points] Let $N \sim \operatorname{Pois}(\lambda)$ and given N, consider N independent Bernoulli trials, each with probability of success p. Let X be the number of successes in these N trials.
(a) [4 points] Find $P(N=n \mid X=k)$ for $n \geq k$.

Solution: $P(N=n \mid X=k)=\frac{P(X=k \mid N=n) P(N=n)}{P(X=k)}=\frac{\binom{n}{k} p^{k}(1-p)^{n-k} e^{-\lambda} \frac{\lambda^{n}}{n!}}{\sum_{j \geq k}\binom{j}{k} p^{k}(1-p)^{j-k} e^{-\lambda} \frac{\lambda_{j}^{j}}{j!}}=e^{-\lambda(1-p) \frac{[\lambda(1-p)]^{n-k}}{(n-k)!}}$.
(b) [3 points] Find the best unconstrained estimator of N given $X=k$.

Solution: $E[N \mid X=k]=\sum_{n \geq k} n e^{-\lambda(1-p)} \frac{[\lambda(1-p)]^{n-k}}{(n-k)!}=\sum_{n \geq k}(n-k+k) e^{-\lambda(1-p)} \frac{[\lambda(1-p)]^{n-k}}{(n-k)!}=$ $k+\lambda(1-p)$.
5. [12 points] Suppose that the pdf of a random variable X is given by

$$
f(x)= \begin{cases}a x+a^{2} & \text { if } x \in[0,|a|] \\ 0 & \text { o.w. }\end{cases}
$$

for some real number a.
(a) [4 points] Find $a>0$ and $a<0$ such that the resulting pdf is valid.

Solution: Note that for all $x \in[0,|a|]$, the value of $a x+a^{2}$ is positive, hence, it is enough to check $\int_{0}^{|a|} f(x) d x=1$.

$$
\int_{0}^{|a|} f(x) d x=\int_{0}^{|a|}\left(a x+a^{2}\right) d x=a \times \frac{|a|^{2}}{2}+a^{2} \times|a|=1
$$

If $a>0$, then the solution of the above equation is $a=\sqrt[3]{\frac{2}{3}}$, and if $a<0$, then the solution of the above equation is $a=-\sqrt[3]{2}$.
(b) $[\mathbf{8}$ points $]$ For the obtained values of a, let $H_{0}: a>0$, i.e., $f_{0}(x)=f(x)$ for $a>0$ and $H_{1}: a<0$, i.e, $f_{1}(x)=f(x)$ for $a<0$. Given an observation $X=u$, describe the ML decision rule.
Solution: Based on the previous part, the hypothesis H_{0} and H_{1} is given as follows:

- $H_{0}: a=\sqrt[3]{\frac{2}{3}}$, i.e., the pdf of X is given by

$$
f_{0}(x)= \begin{cases}\sqrt[3]{\frac{2}{3}} x+\sqrt[3]{\frac{4}{9}} & \text { if } x \in\left[0, \sqrt[3]{\frac{2}{3}}\right] \\ 0 & \text { o.w. }\end{cases}
$$

- $H_{1}: a=-\sqrt[3]{2}$, i.e., the pdf of X is given by

$$
f_{1}(x)= \begin{cases}-\sqrt[3]{2} x+\sqrt[3]{4} & \text { if } x \in[0, \sqrt[3]{2}] \\ 0 & \text { o.w. }\end{cases}
$$

The likelihood ratio for an observation $X=u$ is given by

$$
\begin{equation*}
\Lambda(u)=\frac{f_{1}(u)}{f_{0}(u)} \tag{1}
\end{equation*}
$$

Hence, the ML decision rule is

$$
\begin{cases}H_{1} & \text { if } u \in\left[0, \sqrt[3]{2}-\sqrt[3]{\frac{2}{3}}\right] \cap\left[\sqrt[3]{\frac{2}{3}}, \sqrt[3]{2}\right] \tag{2}\\ H_{0} & \text { o.w. }\end{cases}
$$

Note that if $f_{1}(u)=f_{0}(u)$, then

$$
\begin{equation*}
u=\frac{\sqrt[3]{4}-\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{2}+\sqrt[3]{\frac{2}{3}}}=\sqrt[3]{2}-\sqrt[3]{\frac{2}{3}} \tag{3}
\end{equation*}
$$

6. [8 points] Suppose X and Y are independent random variables such that X is uniformly distributed over $[0,1]$ and Y is uniformly distributed over $[-1,0]$. Let $W=2 X-Y$ and $Z=X+Y$. Find the joint pdfs $f_{X Y}$ and $f_{W Z}$.
Solution: Since X and Y are independent random variables,

$$
f_{X, Y}(u, v)= \begin{cases}1, & u \in[0,1] \text { and } v \in[-1,0] \\ 0, & \text { else }\end{cases}
$$

Also,

$$
\binom{W}{Z}=A\binom{X}{Y}, \quad \text { where } A=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)
$$

We apply Proposition 4.7 .1 in lecture notes, $f_{W, Z}(\alpha, \beta)=\frac{1}{|\operatorname{det} A|} f_{X, Y}\left(A^{-1}\binom{\alpha}{\beta}\right)$, using

$$
\operatorname{det}(A)=3 \quad A^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right)
$$

Specifically, the random variables W and Z have joint pdf given by

$$
\begin{aligned}
f_{W, Z}(\alpha, \beta) & =\frac{1}{3} f_{X, Y}\left(\frac{1}{3} \alpha+\frac{1}{3} \beta,-\frac{1}{3} \alpha+\frac{2}{3} \beta\right) \\
& = \begin{cases}\frac{1}{3}, & \alpha \in[2 \beta, 3-\beta] \text { and } \beta \in[0,1] \\
\frac{1}{3}, & \alpha \in[-\beta, 3+2 \beta] \text { and } \beta \in[-1,0] \\
0, & \text { else. }\end{cases}
\end{aligned}
$$

7. [9 points] Six balls numbered one through six are in a bag. Two balls are drawn at random, without replacement, with all possible outcomes having equal probability. Let X be the number on the one ball drawn and Y be the number on the other ball drawn.
(a) $[3$ points $]$ Find $E[X]$ and $\operatorname{Var}(X)$.

Solution: The joint pmf for X and Y is $p_{X, Y}\left(k_{1}, k_{2}\right)=\frac{1}{30}$ for $k_{1}, k_{2} \in\{1,2, \ldots, 6\}$ and $k_{1} \neq k_{2}$. The pmf for X is $p_{X}(k)=\sum_{k_{2}} p_{X, Y}\left(k, k_{2}\right)=\frac{1}{6}$ for all $k=1,2, \ldots, 6$. Therefore,

$$
E[X]=\frac{1}{6} \sum_{k=1}^{6} k=\frac{7}{2}
$$

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1}{6} \sum_{k=1}^{6} k^{2}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12} .
$$

(b) $[\mathbf{3}$ points $]$ Find $E[Y]$ and $\operatorname{Var}(Y)$.

Solution: The pmf for Y is $p_{Y}(k)=\sum_{k_{1}} p_{X, Y}\left(k_{1}, k\right)=\frac{1}{6}$ for all $k=1,2, \ldots, 6$,

$$
\begin{gathered}
E[Y]=\frac{1}{6} \sum_{k=1}^{6} k=\frac{7}{2} \\
\operatorname{Var}(Y)=E\left[Y^{2}\right]-(E[Y])^{2}=\frac{1}{6} \sum_{k=1}^{6} k^{2}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12} .
\end{gathered}
$$

(c) [3 points] Find the correlation coefficient $\rho_{X, Y}$. Are X and Y independent? Solution:

$$
\begin{gathered}
E[X Y]=\frac{1}{6 \times 5}\left(\sum_{i=1}^{6} \sum_{j=1}^{6} i j-\sum_{i=1}^{6} i^{2}\right)=\frac{1}{30}(21 \times 21-91)=\frac{350}{30}=\frac{35}{3} . \\
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=\frac{35}{3}-\frac{49}{4}=-\frac{7}{12} .
\end{gathered}
$$

The correlation coefficient is $\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=-\frac{7 / 12}{35 / 12}=-\frac{7}{35} . X$ and Y are not independent since the correlation coefficient is non-zero.
8. [12 points] Suppose X and Y are jointly Gaussian random variables with $E[X]=2, E[Y]=$ $0, \operatorname{Var}(X)=16, \operatorname{Var}(Y)=4$, and $\rho=0.25$. Let $Z=X+2 Y+1$.
(a) [4 points] Find $E[Z], \operatorname{Var}(Z)$, and the pdf of Z.

Solution:

$$
E[Z]=E[X+2 Y+1]=3 E[X]+E[Y]+1=2+1=3 .
$$

The covariance between X and $Y, \operatorname{Cov}(X, Y)=\rho \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=0.25 \times 4 \times 2=2$.

$$
\begin{aligned}
\operatorname{Var}(Z) & =\operatorname{Var}(X+2 Y) \\
& =\operatorname{Cov}(X+2 Y, X+2 Y) \\
& =\operatorname{Var}(X)+4 \operatorname{Var}(Y)+4 \operatorname{Cov}(X, Y) \\
& =16+16+8 \\
& =40
\end{aligned}
$$

Since X and Y are jointly Gaussian random variables, $Z=X+2 Y+1$ should be a Gaussian random variable as well, and $Z \sim \mathcal{N}(3,40)$. The pdf of Z should be

$$
\begin{aligned}
f_{Z}(z) & =\frac{1}{\sqrt{2 \pi} \sqrt{40}} e^{-\frac{1}{2}\left(\frac{z-3}{\sqrt{40}}\right)^{2}} \\
& =\frac{1}{\sqrt{80 \pi}} e^{-\frac{(z-3)^{2}}{80}} .
\end{aligned}
$$

(b) $[4$ points $]$ Find $E[Y \mid Z]$.

Solution: Since X and Y are jointly Gaussian and Z is a linear combination of X and $Y, E[Y \mid Z]=\hat{E}[Y \mid Z]=\mu_{Y}+\frac{\operatorname{Cov}(Y, Z)}{\operatorname{Var}(Z)}\left(Z-\mu_{Z}\right)$. The covariance between Y and Z is $\operatorname{Cov}(Y, Z)=\operatorname{Cov}(Y, 3 X+Y+1)=3 \operatorname{Cov}(Y, X)+\operatorname{Var}(Y)=3 \times 2+4=10$. Therefore,

$$
E[Y \mid Z]=0+\frac{10}{40}(Z-3)=\frac{1}{4} Z-\frac{3}{4} .
$$

(c) $[4$ points $]$ Find the mean square error, $E\left[(Y-E[Y \mid Z])^{2}\right]$

Solution: Since Y and Z are jointly Gaussian, the mean square error satisfies,

$$
E\left[(Y-E[Y \mid Z])^{2}\right]=E\left[(Y-\hat{E}[Y \mid Z])^{2}\right]=\operatorname{Var}(Y)\left(1-\rho_{Z, Y}^{2}\right)=\frac{3}{2}
$$

9. [32 points] (2 points per answer)

In order to discourage guessing, 2 points will be deducted for each incorrect answer (no penalty or gain for blank answers). A net negative score will reduce your total exam score.
(a) Suppose A, B and C are three events with positive probabilities.

TRUE FALSE
If A and B are independent, then they are mutually exclusive.
$\square \quad$ If A, B and C are pairwise independent events, then A, B and C are mutually independent.

$$
\begin{aligned}
& \text { If } P(A)=0.7 \text { and } P(B)=0.4 \text {, then } 0.1 \leq P(A B) \leq 0.4 . \\
& P(A \mid C)=P(B) P(A \mid B, C)+P\left(B^{c}\right) P\left(A \mid B^{c}, C\right) . \\
& P(A \mid B) \leq P(A) .
\end{aligned}
$$

Solution: False, False, True, False, False
(b) Consider two random variables X and Y.

TRUE FALSE
The maximum possible value of $\operatorname{Cov}(X, Y)$ is 4 if $\operatorname{Var}(X)=8$ and $\operatorname{Var}(Y)=2$.
$\square \quad \square \quad$ If $E[X]=E[Y]=1, E\left[X^{2}\right]=2, E\left[Y^{2}\right]=4$ and $E[X Y]=2$, then $\operatorname{Var}(X+Y)=6$.If X and Y are independent and uniformly distributed on $[0,1]$, then $X+Y$ is uniformly distributed on $[0,2]$

If X has Poisson distribution, then, $E[X]<\operatorname{Var}(X)$.
If X has geometric distribution, then $P(X>k+n \mid X>n)=P(X>k)$ for all positive integers k and n.

Solution: True, True, False, False, True
(c) Consider two jointly Gaussian random variables X and Y that are uncorrelated.

TRUE FALSE

The MMSE for estimating X by observing Y is $\operatorname{Var}(X)$.If $\mu_{X}=\mu_{Y}=1$ and $\sigma_{X}^{2}=\sigma_{Y}^{2}=2$, then $E[X Y+2 X+Y+1]=4$.
Solution: True, False
(d) Consider a hypothesis testing problem.

TRUE FALSE
Always $p_{\text {miss,MAP }}<p_{\text {miss, ML }}$.
If $\pi_{1}=\pi_{0}=1 / 2$, then the ML and the MAP estimators are the same.
Solution: False, True
(e) Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be a sequence of random variables with mean $-\infty<\mu<\infty$ and bounded variance. Suppose that $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$.

TRUE FALSE
If X_{1} is initially sampled and $X_{2}=X_{3}=\cdots=X_{n}=X_{1}$, then, by the LLN, $P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ for any $\epsilon>0$.

If $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for all i and j with $i \neq j$, then $P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ for any $\epsilon>0$.
Solution: False, True

