Review.
0) Minimum mean square error estimators of random variable Y, after observing random variable X
. Constant costimator: $\delta^{*}=E[Y]$, error $=\sigma_{Y}^{2}$
. Linear estimator: $L^{*}(X)=\hat{E}[Y \mid X]=\mu_{Y}+\alpha_{Y} \rho_{X, Y}\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)$, error $=\sigma_{Y}^{2}\left(1-\rho_{X, Y}^{2}\right)$
. Unconstrained estimator: $g^{*}(X)=E[Y \mid X]$, error $=\sigma_{Y}^{2}-E\left[(E[Y \mid X])^{2}\right]$
(2) Law of large numbers

Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are uncorrelated, each one hos the same mean μ, and thar varionce is
bounded by C. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then, for any $\delta>0$, we have

$$
P\left(\left\{\left|\frac{S_{n}}{n}-\mu\right| \geq \delta\right\}\right)=P\left(\left\{\omega \in \Omega:\left|\frac{S_{n}(\omega)}{n}-\mu\right| \geq \delta\right\}\right) \leq \frac{C}{n \delta^{2}} \xrightarrow{\text { as } n \rightarrow \infty} 0
$$

(3) Central limit theorem

Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent, identically distributed, each with mean μ and variance α^{2}. Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$. Then, for any c, we have

$$
\lim _{n \rightarrow \infty} P\left(\left\{\frac{S_{n}-n \mu}{\sqrt{n \alpha^{2}}} \leqslant c\right\}\right)=\lim _{n \rightarrow \infty} P\left(\left\{\tilde{S}_{n} \leqslant c\right\}\right)=\Phi(c)
$$

where $\tilde{S}_{n}=\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}}=\frac{S_{n}-E\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}$ is the standardized version of S_{n}.
(4) Jointly Guassian random variables

We say random variables X and Y are jointly guassion random variables if any linear combination of X and Y are guassion random variables, ie., for any $a, b \in \mathbb{R}, a X+b Y$ is a guassian random variables.
. class of bivariate normal pots are preserved via linear transformation

- setting $a=0$ and $b=1$, implies that $a X_{+}, b Y=Y$ is $\mathcal{N}\left(\mu_{y}, \sigma_{y}^{2}\right)$. Similarly, X is $\mathcal{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$.
- If $\rho=0$ then $f_{X, Y}(u, v)=f_{X}(u) f_{Y}(\nu)$. Hence uncorrelated jointly guassian random variables are independent.
- Let $Z=a X+b Y$. Then X and Z are jointly guassian.
. If X and Y are guassian. it does not mean that they are jointly guassian.

Proposition: Suppose that $X \& Y$ have bivariate normal pdf with parameters $\mu_{x}, \mu_{y}, o_{x}, \sigma_{y}$ and ρ.

$$
f_{x, y}(u, v)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left(\frac{\left(\frac{u-\mu_{x}}{\sigma_{x}}\right)^{2}+\left(\frac{v-\mu_{y}}{\sigma_{y}}\right)^{2}-2 \rho\left(\frac{u-\mu_{x}}{\sigma_{x}}\right)\left(\frac{v-\mu_{y}}{\sigma_{y}}\right)}{2\left(1-\rho^{2}\right)}\right)
$$

(a) X has $N\left(\mu_{x}, \sigma_{x}^{2}\right)$ distribution, Y has $N\left(\mu_{y}, \sigma_{y}^{2}\right)$ distribution.
(b) for any $a, b \in \mathbb{R}, a X+b Y$ is a quassion random variable, ie., X and Y are jointly quassian.
(a) X has $N V\left(\mu_{x}, \sigma_{x}^{2}\right)$ distribution, Y has $N\left(\mu_{y}, \sigma_{y}^{2}\right)$ distribution.
(b) for any $a, b \in \mathbb{R}$. $a X+b Y$ is a guassion random variable, ie., X and Y are jointly guassian.
(c) $\rho_{X, Y}=\rho$
(d) if $\rho=0$, then they are independent
(c) For estimation of Y from $X, L^{*}(X)=g^{*}(X)$. Equivalently, $E[Y \mid X]=\hat{E}[Y \mid X]$, icc., the best linear estimator of Y using X, is the best unconstrained estimator.
(d) The conditional distribution of Y given $X=u$ is $N\left(\hat{E}[Y \mid X=u], \sigma_{e}^{2}\right)$ where σ_{e}^{2} is MSE for $\hat{E}[Y \mid X]$.
proof: We will prove it for $\mu_{x}=\mu_{y}=0$ and $\sigma_{x}^{2}-\sigma_{y}^{2}=1$ as the general case follows by a linear transformation.

$$
f_{x, y}(u, v)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{u^{2}+\nu^{2}-2 \rho v}{2\left(1-\rho^{2}\right)}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} \cdot\left(\frac{1}{\sqrt{2 \pi}\left(1-\rho^{2}\right)} \exp \left(-\frac{(\nu-\rho u)^{2}}{2\left(1-\rho^{2}\right)}\right)\right)
$$

For fixed u, this is pelf of guasion random variable with distribution $N\left(\rho u, 1-\rho^{2}\right)$
(a) $f_{X}(u)=\int_{-\infty}^{+\infty} f_{x, y}(u, \nu) d \nu=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} \cdot \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}\left(1-\rho^{2}\right)} \exp \left(-\frac{(\nu-\rho u)^{2}}{2\left(1-\rho^{2}\right)}\right) d \nu=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}}$
similarly $f_{Y}(\nu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{\nu^{2}}{2}}$
(b) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ for $c . d$ st. $\operatorname{ad}-b c \neq 0$. Define $\binom{W}{Z}=A\binom{X}{Y}$. Recall that class of bivariate normal pots are preserved via linear transformation. Hence $\binom{W}{Z}$ has bivariate normal pdt and by part (a), $W=a X+b Y$ has normal distribution.
(c) \& (d) Notice that $f_{X, Y}(u, v)=f_{X}(u) f_{Y}(v \mid u)$. Hence, by part (a)

$$
f_{Y \mid X}(\nu / u)=\frac{1}{\sqrt{2 \pi\left(1-\rho^{2}\right)}} \exp \left(-\frac{(\nu-\rho u)^{2}}{2\left(1-\rho^{2}\right)}\right)
$$

In particular, $E[Y \mid X=u]=\rho u$. Hence, $g^{*}(X)=\rho X$. Moreover,

$$
\begin{aligned}
\rho_{X, Y}=E[X Y] & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u v f_{X, Y}(u, v) d v d u \\
& =\int_{-\infty}^{+\infty} u f_{X}(u) \int_{-\infty}^{+\infty} v f_{Y \mid X}(v \mid u) d v d u \\
& =\int_{-\infty}^{+\infty} u f_{X}(u) \cdot \rho u d u=\rho
\end{aligned}
$$

4.37. [Transforming joint Gaussians to independent random variables]

Suppose X and Y are jointly Gaussian such that X is $N(0,9), Y$ is $N(0,4)$, and the correlation coefficient is denoted by ρ. The solutions to the questions below may depend on ρ and may fail to exist for some values of ρ.
(a) For what value(s) of a is X independent of $X+a Y$?
(b) For what value(s) of b is $X+Y$ independent of $X-b Y$?
(c) For what value(s) of c is $X+c Y$ independent of $X-c Y$?
(d) For what value(s) of d is $X+d Y$ independent of $(X-d Y)^{3}$?
4.30. [Law of Large Numbers and Central Limit Theorem]

A fair die is rolled n times. Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$, where X_{i} is the number showing on the $i^{t h}$ roll. Determine a condition on n so the probability the sample average $\frac{S_{n}}{n}$ is within 1% of the mean μ_{X}, is greater than 0.95. (Note: This problem is related to Example 4.10.6.)
(a) Solve the problem using the form of the law of large numbers based on the Chebychev inequality (i.e. Proposition 4.10.1 in the notes).
(b) Solve the problem using the Gaussian approximation for S_{n}, which is suggested by the CLT. (Do not use the continuity correction, because, unless $3.5 n \pm(0.01) n \mu_{X}$ are integers, inserting the term 0.5 is not applicable).

