Kevicu

O joint cof.

Det. For two random variables X and Y that are defined over the same probability space:

@joint pmf

If X and Y are discrete-type,

$$P_{XY}(\omega, \nu) = P(X = \alpha, Y = \nu) = P(\{\omega \in \mathbb{N} : X(\omega) \in \alpha, Y(\omega) \in \nu\})$$

there exists {u,,u,,...} and {u,,u,,...} such that Pxx (u,v)=0 if ue {u,,u,...} or ue {u,,v,...}.

. Conditional pmf.

$$P_{Y|X}(v|u) = P(Y=v|X=u) = \frac{P(X=u,Y=v)}{P(X=u)} = \frac{P_{XY}(u,v)}{P_{Y}(u)}$$

@joint pdf

We say random variables X and Y are jointly continuous it

the function fx, y is called the joint polt.

. For any region A c 122, we have

$$P((X,Y) \in A) = \iint_A f_{X,Y}(u,v) du dv$$

. Given a function $g:\mathbb{R}^2 \longrightarrow \mathbb{R}$, we can use LOTUS to calculate $\mathbb{E}[g(X,Y)]$.

$$E\left[g(X,Y)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u,v) f_{X,Y}(u,v) du dv$$

. Def. conditional pdf of Y given X, denoted by fylx is defined as

$$f_{Y|X}(u_0|u_0) = \begin{cases} \frac{f_{XY}(u_0,v_0)}{f_{X}(u_0)} & \text{if } f_{X}(u_0) > 0 \\ & \text{for any } (u_0,u_0) \in \mathbb{R}^2 \end{cases}$$
undefined 0.14

ty/x (volue) = , tor any (u.,v.) elk

 $P(Y \in A \mid X = u_0) = \int_A f_{Y\mid X}(v\mid u_0) dv \sim conditional probability of Y given <math>X = u$ $E[Y\mid X = u_0] = \int_{-\infty}^{u_0} v \cdot f_{Y\mid X}(v\mid u_0) dv \sim conditional expectation of Y given <math>X = u$

To day. @ independence of random variables

Oindependence of random variables

Recall that events A,BcD are independent if P(AB) = P(A)P(B).

Def. Random variables X and Y ove defined to be independent if any pairs of events $\{X \in A\}$ & $\{Y \in B\}$ are independent. $P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$

Let $A = (-\infty, u)$ and $B = (-\infty, u)$, then we have $F_{X,Y}(u, v) = F_X(u, F_Y(v))$.

Proposition:

. random variables X & Y are independent if be only if for any universel.

 $F_{X,Y}(u,v) = F_X(u,)F_Y(v)$

· discrete-type random variables X & Y are independent if & only if

. jointly continuous-type random variables X & Y are independent if and only if $f_{x,y}(u,v) = f_{x}(u)f_{y}(v)$

proof: Notice that Fx, uniquely defines joint probability of X and Y, P(XEA, YEB) for any A and B.

. Determining from a joint pdf whether independence holds

Approach 1. given $f_{X,Y}(u,v)$, calculate $f_X(u) = \int_{X,Y}^{\infty} f_{X,Y}(u,v) dv$. Derive the ratio $\frac{f_{X,Y}(u,v)}{f_{X}(u)}$. X by Y are independent if and only if the ratio does not depend on u for all $u,v \in \mathbb{R}$ (as long as $f_X(u) > 0$)

Proposition. X by Y are independent if Y only if for any $y \in \mathbb{R}$, either $f_X(u) = 0$ or $f_{Y|X}(y|y) = f_{Y}(y)$ for all $y \in \mathbb{R}$.

Notice that if $f_{\chi(u)=0}$ then $f_{\chi,\gamma}(u,v)=0$. If $f_{\chi}(u)\neq 0$ then $f_{\gamma|\chi}(v|u)=f_{\gamma}(v)$ implies $f_{\chi,\gamma}(u,v)=f_{\gamma}(v)$.

Notice that if $f_{\chi(u)}=0$ then $f_{\chi,\gamma}(u,\nu)=0$. If $f_{\chi}(u)\neq 0$ then $f_{\gamma|\chi}(\nu|u)=f_{\gamma}(\nu)$ implies $\frac{f_{\chi,\gamma}(u,\nu)}{f_{\chi}(u)}=f_{\gamma}(\nu)$.

Approach 2. Support of $f_{\chi,\gamma}(u,\nu)=f_{\chi,$

Suppose that A and B are each finite union of intervals, e.g., $A = [-1, 7] \cup (3, 5)$ and $B = \{4\} \cup (3, 6]$. Define |A| to be the sum of the lengths of the intervals making up A, e.g., |A| = 2 + 2 and |B| = 0 + 3.

Define $A \times B = \{(u,v) : u \in A, v \in B\}$. $A \times B$ is called the product set. The area of product set is denoted by $|A \times B|$ and is equal to $|A| \times |B|$

Def. We say ScIR has swap property if for any (a,b) & S and (c,d) & S we have (a,d) & S and (b,c) & S

Figure 4.12: The product set $A \times B$ for sets A and B.

Notice that swap holds for product sets.

Proposition: Let ScIR2. Then S is a product set if a only if it has swap property.

Suppose that $f_{X,Y}(u,v) = f_{X}(u) f_{Y}(v)$ for all $u,v \in \mathbb{R}$. Notice that $f_{X,Y}(u,v) > 0$ if and only if $f_{X}(u) > 0$ and $f_{Y}(v) > 0$. Hence, if $A = \{u \in \mathbb{R} : f_{X}(u) > 0\}$ and $B = \{v \in \mathbb{R} : f_{Y}(v) > 0\}$ then we have support of $f_{X,Y} = \{(u,v) \in \mathbb{R}^2 : f_{X,Y}(u,v) > 0\} = A \times B$

which is a product set!

Proposition: If X & Y are independent jointly continuous, then support of f_{XY} is a product set. proof: It also follows by swap test. Since they are independent, we have

Corollary: Suppose that (X,Y) is uniformly distributed over a set S. Then X & Y are independent if & only if S is product space.

proof. If they are independent then S has to be product set. If S is product set AxB then |S|=|AxB|=|A|IB| & we have

now one can integrate and derive the marginals.

4.7. [Recognizing independence]

Decide whether X and Y are independent for each of the following three joint pdfs. If they are independent, identify the marginal pdfs f_X and f_Y . If they are not, give a reason why.

(a)
$$f_{X,Y}(u,v) = \begin{cases} \frac{4}{\pi} e^{-(u^2+v^2)} & u,v \ge 0\\ 0 & \text{else.} \end{cases}$$

(b)
$$f_{X,Y}(u,v) = \begin{cases} -\frac{\ln(u)v^2}{21} & 0 \le u \le 1, 1 \le v \le 4 \\ 0 & \text{else.} \end{cases}$$

(c)
$$f_{X,Y}(u,v) = \begin{cases} \frac{(96)u^2v^2}{\pi} & u^2 + v^2 \le 1\\ 0 & \text{else.} \end{cases}$$