Review

\(\mathcal{C}_{\text{joint cdf}} \)

- For two random variables \(X \) and \(Y \) that are defined over the same probability space:

\[
F_{X,Y}(u,v) = P(X \leq u, Y \leq v) = P \left(\{ \omega \in \Omega : X(\omega) \leq u, Y(\omega) \leq v \} \right)
\]

\(\mathcal{C}_{\text{joint pdf}} \)

- If \(X \) and \(Y \) are discrete-type:

\[
P_{X,Y}(u,v) = P(X = u, Y = v) = P(\{ \omega \in \Omega : X(\omega) = u, Y(\omega) = v \})
\]

there exists \(\{u_1, u_2, \ldots\} \) and \(\{v_1, v_2, \ldots\} \) such that \(P_{X,Y}(u,v) = 0 \) if \(u \not\in \{u_1, u_2, \ldots\} \) or \(v \not\in \{v_1, v_2, \ldots\} \).

- Conditional pdf,

\[
P_{Y|X}(v|u) = \frac{P(Y = v, X = u)}{P(X = u)} = \frac{P_{X,Y}(u,v)}{p_X(u)}
\]

\(\mathcal{C}_{\text{joint pdf}} \)

- We say random variables \(X \) and \(Y \) are jointly continuous if

\[
F_{X,Y}(u,v) = \int_{-\infty}^{u} \int_{-\infty}^{v} f_{X,Y}(w_1, w_2) \, dw_1 \, dw_2
\]

the function \(f_{X,Y} \) is called the joint pdf.

- For any region \(A \subset \mathbb{R}^2 \), we have

\[
P((X,Y) \in A) = \iint_A f_{X,Y}(w_1, w_2) \, dw_1 \, dw_2
\]

- Given a function \(g : \mathbb{R}^2 \rightarrow \mathbb{R} \), we can use LOTUS to calculate \(\mathbb{E}[g(X,Y)] \):

\[
\mathbb{E}[g(X,Y)] = \iint_{-\infty}^{\infty} \iint_{-\infty}^{\infty} g(w_1, w_2) f_{X,Y}(w_1, w_2) \, dw_1 \, dw_2
\]

- Def. conditional pdf of \(Y \) given \(X \), denoted by \(f_{Y|X} \), is defined as

\[
f_{Y|X}(w|u) = \begin{cases} \frac{f_{X,Y}(u,w)}{f_X(u)} & \text{if } f_X(u) > 0 \\ \text{undefined} & \text{for any } (u,w) \in \mathbb{R}^2 \end{cases}
\]
$$f_{Y|X}(u|w_u) = \begin{cases} \frac{1}{u} & \text{for any } (u, w_u) \in \mathbb{R} \\ \text{undefined} & \text{otherwise} \end{cases}$$

$$P(Y \in A | X = w_u) = \int_A f_{Y|X}(u|w_u) \, du \quad \text{conditional probability of } Y \text{ given } X = w_u$$

$$E[Y | X = w_u] = \int_{-\infty}^{\infty} u \cdot f_{Y|X}(u|w_u) \, du \quad \text{conditional expectation of } Y \text{ given } X = w_u$$

Today: independence of random variables.

Recall that events A, B, C, D are independent if $P(AB) = P(A)P(B)$.

Definition. Random variables X and Y are defined to be independent if any pairs of events $\{X \in A\}$ and $\{Y \in B\}$ are independent.

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Let $A = (-\infty, w)$ and $B = (-\infty, u)$, then we have $F_{X,Y}(w, u) = F_X(w)F_Y(u)$.

Proposition.

- Random variables X and Y are independent if and only if for any $u, w \in \mathbb{R}$,

 $$F_{X,Y}(u, w) = F_X(u)F_Y(w)$$

- Discrete-type random variables X and Y are independent if and only if

 $$P_{X,Y}(u, w) = P_X(u)P_Y(w)$$

- Jointly continuous-type random variables X and Y are independent if and only if

 $$f_{X,Y}(u, w) = f_X(u)f_Y(w)$$

Proof. Notice that $F_{X,Y}$ uniquely defines joint probability of X and Y, $P(X \in A, Y \in B)$ for any A and B.

Determining from a joint pdf whether independence holds.

Approach 1. Given $f_{X,Y}(w, u)$, calculate $f_X(w) = \int_{-\infty}^{\infty} f_{X,Y}(w, u) \, du$. Derive the ratio $\frac{f_{X,Y}(w, u)}{f_X(w)}$. X and Y are independent if and only if the ratio does not depend on u for all $u, w \in \mathbb{R}$ (as long as $f_X(w) > 0$).

Proposition. X and Y are independent if and only if for any $w \in \mathbb{R}$, either $f_X(w) = 0$ or $f_{X,Y}(u, w) = f_Y(u)$ for all $u \in \mathbb{R}$.

Notice that if $f_X(w) > 0$ then $f_{X,Y}(u, w) = 0$. If $f_X(w) > 0$ then $f_{X,Y}(u, v) = f_Y(u)$ implies $\frac{f_{X,Y}(u, v)}{f_Y(u)} = f_X(w)$.
Proposition. Let \(S \subset \mathbb{R}^2 \). Then \(S \) is a product set if and only if it has swap property.

Suppose that \(f_{XY}(w,v) = f_X(w) f_Y(v) \) for all \(w,v \in \mathbb{R} \). Notice that \(f_{XY}(w,v) > 0 \) if and only if \(f_X(w) > 0 \) and \(f_Y(v) > 0 \). Hence, if \(A = \{ w \in \mathbb{R} : f_X(w) > 0 \} \) and \(B = \{ v \in \mathbb{R} : f_Y(v) > 0 \} \), then we have

\[
\text{support of } f_{XY} = \{ (w,v) \in \mathbb{R}^2 : f_{XY}(w,v) > 0 \} = A \times B
\]

which is a product set!

Proposition. If \(X \) & \(Y \) are independent jointly continuous, then support of \(f_{XY} \) is a product set.

proof. It also follows by swap test. Since they are independent, we have

\[
\begin{align*}
\text{support } & f_{XY} (a,b) > 0 \quad f_{XY} (a) f_Y(b) > 0 \quad f_X(a) f_Y(d) > 0 \quad f_{XY} (ad) > 0 \\
& f_{XY} (c,d) > 0 \quad f_X(a) f_Y(d) > 0 \quad f_X(c) f_Y(b) > 0 \quad f_{XY} (cb) > 0
\end{align*}
\]

Corollary. Suppose that \((X,Y)\) is uniformly distributed over a set \(S \). Then \(X \) & \(Y \) are independent if and only if \(S \) is product space.

proof. If they are independent then \(S \) has to be product set. If \(S \) is product set \(A \times B \) then \(|S| = |A| \times |B| = |A||B| \) & we have
\[
 f_{X,Y}(u,v) = \begin{cases}
 \frac{1}{|A\cap B|}, & u \in A, v \in B \\
 0, & \text{otherwise}
\end{cases}
\]

now one can integrate and derive the marginals.

4.7. [Recognizing independence]

Decide whether \(X \) and \(Y \) are independent for each of the following three joint pdfs. If they are independent, identify the marginal pdfs \(f_X \) and \(f_Y \). If they are not, give a reason why.

(a) \(f_{X,Y}(u,v) = \begin{cases}
 \frac{4}{\pi} e^{-(u^2+v^2)}, & u, v \geq 0 \\
 0, & \text{else.}
\end{cases} \)

(b) \(f_{X,Y}(u,v) = \begin{cases}
 -\frac{\ln(u)v^2}{21}, & 0 \leq u \leq 1, 1 \leq v \leq 4 \\
 0, & \text{else.}
\end{cases} \)

(c) \(f_{X,Y}(u,v) = \begin{cases}
 \frac{(96)u^2v^2}{\pi}, & u^2 + v^2 \leq 1 \\
 0, & \text{else.}
\end{cases} \)