Review
0 dint coff.
Oct. For two random variables X and Y that are defined over the same probability space:

$$
f_{X, Y}(u, v)=P\left(X_{\left\langle u, Y_{\leqslant v}\right)}=P\left\{\omega \in \Omega, X_{(\omega) \leqslant u, Y, Y}(\omega \leqslant<v\}\right.\right.
$$

- joint part

If X and Y are discrete-type,

$$
P_{x, y}(u, \nu)=P(X=u, Y=\nu)=P(\{\omega \in \Omega: X(\omega) \in u, Y(\omega) \in v\})
$$

there exists $\left\{u_{1}, u_{2}, \ldots\right\}$ and $\left\{v_{v}, v_{2},\right\}$ such that $P_{x_{1},(u,)}=0$ it $u \in\left\{u_{1}, u_{2},\right\}$ or $v \in\left\{v_{1}, v_{2},\right\}$.

- Conditional par.

$$
P_{Y \mid X}(\nu \mid u)=P(Y=\nu \mid X=u)=\frac{P\left(X=u, Y_{=v}\right)}{P(X=u)}=\frac{P_{X Y}(u, v)}{P_{x}(u)}
$$

© joint past
We say random variables X and Y are jointly continuous if

$$
F_{x, y}\left(u_{0}, v_{u}\right)=\int_{-\infty}^{u_{0}} \int_{-\infty}^{\nu_{0}} f_{x, y}(u, u) d x d u
$$

the function $f_{X, Y}$ is called the joint pdt.

- For any region $A \subset \mathbb{R}^{2}$, we have

$$
P((x, y) \in A)=\iint_{A} f_{x, y}(u, y) d d v
$$

- Given a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we can use LOTUS to calcula-e $E[g(X, Y)]$:

$$
E[g(x, y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u, v) f_{x, y}(u, v) d u d v
$$

- Def: conditional pdt of Y given X, denoted by $f_{Y I X}$ is defined as

$$
f_{Y \mid X}\left(v v_{0} \mid \omega_{0}\right)=\left\{\begin{array}{ll}
\frac{f_{X Y}\left(\omega_{0}, v_{0}\right)}{f_{X}\left(\omega_{u}\right)} & \text { if } f_{X}\left(\omega_{u}\right)>0 \\
\text { undefined } & 0 . W
\end{array}, \text { for any }\left(\omega_{0}, \omega_{0}\right) \in R^{2}\right.
$$

$$
t_{Y \mid X}\left(v_{0} \mid u_{0}\right)=\left[\begin{array}{ll}
\cdots & \text { or any }\left(u_{0}, v_{0}\right) \in \mathbb{R} \\
\text { undefined }
\end{array}\right.
$$

$P\left(Y \in A \mid X=u_{0}\right)=\int_{A} f_{Y \mid X}\left(v \mid u_{0}\right) d v \leadsto$ conditional probability of Y given $X=u$
$E\left[Y \mid X=u_{0}\right]=\int_{-\infty}^{+\infty} v . f_{Y \mid X}\left(v \mid u_{0}\right) d v \leadsto$ conditional expectation of Y given $X=u$

Today: independence of random variables
independence of random variables
Recall that events $A, B \subset \Omega$ are independent if $P(A B)=P(A) P(B)$.
Def: Random variables X and Y are defined to be independent if any pairs of events $\{X \in A\}$ \& $\{Y \in B\}$ are independent.

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B)
$$

Let $A=\left(-\infty, u_{i}\right)$ and $B=\left(-\infty, u_{0}\right)$, then we have $F_{X, Y}\left(u, v_{y}\right)=F_{X}\left(u_{0}\right) F_{Y}(\nu)$.
Proposition:

- random variables X \& Y are independent if \& only if for any $u_{a}, v_{e} \in \mathbb{R}$:

$$
F_{X, Y}(u, y)=F_{X}(u,) F_{Y}(\nu)
$$

- discrete-type random variables X \& Y are independent it \& only if

$$
P_{X, Y}(u, v)=P_{x}(u) P_{Y}(\nu)
$$

- jointly continuous-type random variables X \& Y are independent it and only if

$$
f_{X, Y}(u, v)=f_{x}(u) f_{y}(\nu)
$$

proof: Notice that $F_{X, Y}$ uniquely defines joint probability of X and $Y, P(X \in A, Y \in B)$ for any A and B.

- Determining from a joint pal whether independence holds

Approach 1. given $f_{x, Y}(u, v)$, calculate $f_{X}(u)=\int_{-\infty}^{+\infty} f_{x, Y}(u, v) d v$. Derive the ratio $\frac{f_{x, Y}(u, v)}{f_{x}(u)}$. $X \& Y$ are independent if and only if the ratio does not depend on a for all $u, \nu \in \mathbb{R}^{-\infty}\left(\right.$ as long as $\left.f_{X}(u)>0\right)$
Proposition: X \& Y are independent if \& only if for any $a \in \mathbb{R}$, cither $f_{X}(u)=0$ or $f_{Y \mid X}(\nu \mid u)=f_{Y}(\nu)$ for all $v \in \mathbb{R}$. Notice that if $f_{X}(u)=0$ then $f_{X, Y}(u, v)=0$. If $f_{X}(u) \neq 0$ then $f_{Y \mid X}(\nu \mid u)=f_{Y}(v)$ implies $\frac{f_{X, Y}(u, v)}{}=f_{Y}(v)$.

Iroposicion: A a 1 are independent if a only ir tor any $u \in \| l$, cillier $T_{X}(u)=0$ or $T_{Y \mid X}(\nu \mid u)=T_{Y}(\nu)$ for all $\nu \in I n$.
Notice that if $f_{X}(u)=0$ then $f_{X, Y}(u, v)=0$. If $f_{X}(u) \neq 0$ then $f_{Y \mid X}(v \mid u)=f_{Y}(v)$ implies $\frac{f_{X, Y}(u, v)}{f_{X}(u)}=f_{Y}(v)$.
Approach 2. support of $f_{X, Y}$ \& swap test.
Suppose that A and B are each finite union of intervals, eg. $A=[-1,1] \cup(3,5)$ and $B=\{4\} \cup(3,6]$.
Define $|A|$ to be the sum of the lengths of the intervals making up A, egg., $|A|=2+2$ and $|B|=0+3$.
Define $A \times B=\{(u, v): u \in A, v \in B\}$. $A \times B$ is called the product set. The area of product set is denoted by $|A \times B|$ and is equal to $|A| \times 1 B \mid$
Def: We say $S \subset \mathbb{R}^{2}$ has swap property if for any $(a, b) \in S$ and $(c, d) \in S$ we have $(a, d) \in S$ and $(b, c) \in S$

Figure 4.12: The product set $A \times B$ for sets A and B.

Notice that swap holds for product sets.
Proposition: Let ScR R2. Then S is a product sect if \& any if it has swap property.
Suppose that $f_{x, y}(u, v)=f_{x}(\omega) f_{y}(\omega)$ for all a,velR. Notice that $f_{x, y}(u, \nu)>0$ it and only if $f_{X}(u)>0$ and $f_{Y}(v)>0$. Hence, if $A=\left\{u \in \mathbb{R}: f_{x}(u)>0\right\}$ and $B=\left\{v \in \mathbb{R}: f_{Y}(v)>0\right\}$ then we have

$$
\text { support of } f_{x, y}=\left\{(u, v) \in \mathbb{R}^{2}: f_{X, y}(u, v)>0\right\}=A \times B
$$

which is a product set!
Proposition: If $X \& Y$ are independent jointly contimous, then support of $f_{X, Y}$ is a product set. proof: It also follows by swap test. Since they are independent, we have

$$
\left.\begin{array}{l}
f_{x, y}(a, b)>0 \\
f_{x, y}(c, d)>0
\end{array} \Longleftrightarrow f_{x}(a) f_{y}(b)>0 \quad f_{x}(a) f_{y}(d)>0 \quad f_{x, y}(a, d)>0\right)
$$

Coolly. Suppose that (X, Y) is uniformly distributed ore a set S. Then $X \& Y$ are indeporatert if d only if S is project space.
prat. If they ace indpocalat then S has to be pooled st. If S is proust $x t ~ A \times B$ then $|S|=|A \times B|=A| | B \mid$ \& we have

$$
f_{x, y}(u, v)= \begin{cases}\frac{1}{|A \| B|} & u \in A, \nu \in B \\ 0 & 0 . W .\end{cases}
$$

now one can integrate and derive the marginals.

4.7. [Recognizing independence]

Decide whether X and Y are independent for each of the following three joint pdfs. If they are independent, identify the marginal pdfs f_{X} and f_{Y}. If they are not, give a reason why.
(a) $f_{X, Y}(u, v)=\left\{\begin{array}{cl}\frac{4}{\pi} e^{-\left(u^{2}+v^{2}\right)} & u, v \geq 0 \\ 0 & \text { else. }\end{array}\right.$
(b) $f_{X, Y}(u, v)=\left\{\begin{array}{cl}-\frac{\ln (u) v^{2}}{21} & 0 \leq u \leq 1,1 \leq v \leq 4 \\ 0 & \text { else. }\end{array}\right.$
(c) $f_{X, Y}(u, v)=\left\{\begin{array}{cl}\frac{(96) u^{2} v^{2}}{\pi} & u^{2}+v^{2} \leq 1 \\ 0 & \text { else. }\end{array}\right.$

