Review.
(1)joint pm
. If X and Y are discrete type, their joint prat is defined as

$$
P_{X, Y}(u, \nu)=P(X=u Y=\nu)=P\left(\left\{\omega \in \Omega, X(\omega)=u, Y_{(\omega)=\nu}\right\}\right)
$$

- Conditional probability

$$
P_{Y \mid X}(\nu \mid u)=P(Y=v \mid X=u)=\frac{P\left(X_{=u,}, Y_{=v}\right)}{P(X=u)}=\frac{P_{X Y}(u, v)}{P_{X}(u)}
$$

- Relation between marginal $p m$ t and joint pm

$$
P_{x}(u)=\sum_{i} P_{x, y}\left(u, v_{i}\right), P_{y}(\nu)=\sum_{i} P_{x, y}\left(u_{i}, v\right)
$$

(2) joint pal

We say random variables X and Y are jointly continuous if

$$
F_{x, y}\left(u_{0}, v\right)=\int_{-\infty}^{u_{0}} \int_{-\infty}^{v_{0}} f_{x, y}(u, v) d d d u
$$

the function $f_{X, Y}$ is called the joint pdt.

- For any region $A \subset \mathbb{R}^{2}$, we have

$$
P((X, Y) \in A)=\iint_{A} f_{x, y}(u, y) d u d v
$$

Today: joint pot
Proposition: A function f is joint pot if and only it:
JPDI. f is mon-rgative, ie., $f(u, v) \geq 0$ for all $(u, v) \in \mathbb{R}^{2}$
JPD 2: $\int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} f_{x, y}(v, v) d v d v=1$
Prot. If f statistics above then $F\left(u_{0}, v_{0}\right)=\int_{-\infty}^{v} \int_{-\infty}^{\omega} f(u, v) d u d v$ statistics $J F-J F 6$. If f is joint pdf, then JPDI is holds since $\quad P((X, Y) \in R)=\iint_{R} f(u, v) d u d v \geq 0$ for all $R \subset \mathbb{R}^{2}$ (measurable)
Def: Support of $f_{x, y}$ is the set of $(u, v) \in \mathbb{R}^{2}$ for which $f_{x, y}(u, v)>0$.

- Relation between joint pdf $f_{X, Y}$ and marginal pd ts f_{X} and f_{Y} :

$$
\text { - } F_{X}(u)=\lim _{v \rightarrow \infty} F_{X, Y}\left(u_{0}, \nu_{0}\right)=\lim _{y \rightarrow \infty} \int_{-\infty}^{v_{0}} \int_{-\infty}^{u_{0}} f_{X, Y}(u, y) d u d v=\int_{-\infty}^{+\infty} \int_{-\infty}^{u} f_{X, Y}(u, v) d u d y
$$

taking derivatives with respect to V. yields
taking derivatives with respect to v_{0} yields

$$
f_{x}\left(u_{0}\right)=\int_{-\infty}^{+\infty} f_{x, y}\left(u_{0}, v\right) d v \leadsto \text { marginal pdf of } X
$$

Similarly $f_{Y}\left(v_{0}\right)=\int_{-\infty}^{+\infty} f_{X, Y}\left(u, v_{0}\right) d u \leadsto$ marginal pdt of Y

- Given a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we can use LOTUS to calculate $E[g(X, Y)]$:

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u, v) F_{X, Y}(u, v) d u d v
$$

. Suppose that $g(X, Y)=a X+b Y+c$. By LOTUS

$$
\begin{aligned}
E[g(X, Y)] & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}(a u+b v+c) f_{X, Y}(u, v) d u d v \\
& =a \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u f_{X, Y}(u, v) d u d v+b \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} v f_{X, Y}(u, v) d u d v+c \\
& =a \int_{-\infty}^{+\infty} u\left(\int_{-\infty}^{+\infty} f_{X, Y}(u, v) d v\right) d u+b \int_{-\infty}^{+\infty} v\left(\int_{-\infty}^{+\infty} f_{X, Y}(u, v) d u\right) d v+c \\
& =a \int_{-\infty}^{+\infty} u f_{X}(u) d u+b \int_{-\infty}^{+\infty} u f_{y}(v) d v+c=a[E[X]+b E[Y]+c
\end{aligned}
$$

\Rightarrow LOTUS implies linearity of expectation.

- Uniform joint pats: A simple class of joint pots are uniform joint potts over a surface $S \subset \mathbb{R}^{2}$.

$$
f_{X, Y}(u, v)=\left\{\begin{array}{ll}
\frac{1}{\text { area of } S} & \text { if }(u, v) \in S \\
0 & \text { if }(u, v) \notin S
\end{array} \Rightarrow P((X, Y) \in A)=\frac{\text { area of } A \cap S}{\text { area of } S}\right.
$$

- Function of (X, Y) : suppose that $Z=g(X, Y)$ and we are given the joint pdt $f_{X, Y}$. Our goal is to find pdt of Z. Idea is same as before
Step 1. find support of Z. Step 2. find $c d f$ of Z using $F_{z}(z)=P(Z<z)=\iint_{g(x, y) \leq z} f_{x, y}(u) d d u d$,$x . Step 3$: use $\frac{f_{z}(u)}{} \frac{d F_{z}}{d z}(u)$
Def: conditional pdf of Y given X, denoted by $f_{Y \mid X}$ is defined as

$$
f_{Y \mid X}\left(v_{0} \mid u_{0}\right)=\left\{\begin{array}{ll}
\frac{f_{X, Y}\left(u_{0}, v_{0}\right)}{f_{X}\left(u_{u}\right)} & \text { if } f_{X}\left(u_{0}\right)>0 \\
\text { undefined } & 0 . w .
\end{array} \quad \text {. for any }\left(u_{0}, v_{0}\right) \in R^{2}\right.
$$

Properties of joint pats:

- Assume $f_{x}\left(u_{0}\right)>0$. We have,

$$
\left.\right|^{+\infty} f_{\ldots \ldots(1,) \mid L .) d v} \int_{-\infty}^{+\infty} f_{x, y}(u, v) d v \quad f_{x}\left(u_{0}\right)
$$

- assume $T_{X}\left(u_{0}\right)>0$. We nave,

$$
\int_{-\infty}^{+\infty} f_{Y \mid X}\left(v \mid u_{0}\right) d v=\frac{\int_{-\infty}^{+\infty} f_{X, Y}\left(u_{0}, v\right) d v}{f_{X}\left(u_{0}\right)}=\frac{f_{X}\left(u_{0}\right)}{f_{X}\left(u_{0}\right)}=1
$$

Hance, $f_{Y \mid X}\left(. \mid u_{0}\right)$ is a valid poll.

- We can write

$$
\begin{aligned}
& \text { an write } \\
& f_{Y \mid X}\left(v_{0} \mid u_{0}\right)=\frac{f_{X, Y}\left(u_{0}, v_{0}\right)}{f_{X}\left(u_{0}\right)}=\lim _{\varepsilon \rightarrow 0} \frac{P\left(Y \in\left(v_{0}-\varepsilon, v_{0}+\varepsilon\right), X \in\left(u_{0}-\varepsilon, u_{0}+\varepsilon\right)\right)}{4 \varepsilon^{2}} \\
& \\
& =\lim _{\varepsilon \rightarrow 0} \frac{P\left(X \in\left(u_{0}-\varepsilon, u_{0}+\varepsilon\right)\right)}{2 \varepsilon}
\end{aligned}
$$

Hence $f_{Y \mid X}\left(u_{0}, v_{0}\right) \cdot 2 \varepsilon \approx P\left(Y \in\left(\nu_{0}-\varepsilon, v_{0}+\varepsilon\right) \mid X \in\left(u_{0}-\varepsilon, u_{0}+\varepsilon\right)\right)$, ie., conditional pdf has probabilistic interpretation.

- $f_{X, Y}(u, v)=f_{Y \mid X}(\nu \mid u) \cdot f_{X}(u)$. This gives a version of law of total probability:

$$
f_{Y(v)}=\int_{-\infty}^{+\infty} f_{X, Y}(u, v) d u=\int_{-\infty}^{+\infty} f_{Y \mid X}(v \mid u) f_{X}(u) d u .
$$

- Suppose that we observed $X=u_{0}$. It is a legitimate question to ask about statistical properties of Y.

$$
P\left(Y \in A \mid X=u_{0}\right)=\int_{A} f_{Y \mid X}\left(v \mid u_{0}\right) d v \leadsto \text { conditional probability of } Y \text { given } X=u
$$

$E\left[Y \mid X=u_{0}\right]=\int_{-\infty}^{+\infty} v . f_{Y \mid X}\left(v \mid u_{0}\right) d v \leadsto$ conditional expectation of Y given $X=u$
. If we define $g(u)=E[Y \mid X=u]$, assuming $f_{x}(u)>0$ for all u, then $g: \mathbb{R} \rightarrow \mathbb{R}$ is well-defined function. Hence, $g(X)$ is a well-defined random variable:
$g(X)=E[Y \mid X] \leadsto$ conditional expectation of Y given X.
4.9. [Working with a joint pdf I]

Suppose two random variables X and Y have the following joint pdf:

$$
f_{X, Y}(u, v)=\left\{\begin{aligned}
\frac{u v+1}{C} & \text { if }-1 \leq u \leq 1 \text { and }-1 \leq v \leq 1 \\
0 & \text { else }
\end{aligned}\right.
$$

(a) Find the pdf of f_{X} (you need not find the constant C at this point).
(b) Find the constant C.
(c) For $-1 \leq u_{o} \leq 1$, find the conditional pdf $f_{Y \mid X}\left(v \mid u_{o}\right)$. Specify it for all real values of v.
(d) Find $E\left[X^{m} Y^{n}\right]$ for integers $m, n \geq 0$.
(e) Find $P\{X+Y \geq 1\}$.

Solution:
(a) for any $u_{0} \in[-1,1], f_{x}\left(u_{0}\right)=\int_{-\infty}^{+\infty} f_{X, Y}\left(u_{0}, v\right) d v=\int_{-1}^{1} \frac{u_{0} v+1}{c} d v=\frac{2}{c}$
for any $u_{0} \notin[-1,1], f_{x}\left(u_{0}\right)=0$
(b) $\int_{-\infty}^{+\infty} f_{x}(u) d u=1 \Rightarrow \int_{-1}^{+1} \frac{2}{c}=1 \Rightarrow c=4$.
(c) $f_{Y \mid X}\left(\nu \mid u_{0}\right)=\frac{f_{X, Y}\left(u_{0}, v\right)}{f_{X}\left(u_{0}\right)}= \begin{cases}\frac{u_{0} \nu+1}{2} & \text { if } v \in[-1,1] \\ 0 & \text { if } v \notin[-1,1]\end{cases}$
(d) $E\left[X^{m} Y^{n}\right]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u^{m} v^{n} f_{X, Y}(u, v) d u d v$

$$
=\int_{-1}^{+1} \int_{-1}^{+1} u^{m} v^{n} \cdot \frac{u v+1}{4} d u d v
$$

$$
=\frac{1}{4}\left(\int_{-1}^{+1} \int_{-1}^{+1} u^{m+1} v^{n+1} d u d v_{+} \int_{-1}^{+1} \int_{-1}^{+1} u^{m} v^{n} d d d v\right)= \begin{cases}\frac{1}{(m+1)(n+1)} & \text { if } m \text { and } n \text { are both odd } \\ \frac{1}{m n} & \text { if } m \text { and } n \text { are both even } \\ 0 & \text { ow. } \uparrow\end{cases}
$$

(e) $P(X+Y \geq 1)=\int_{0}^{+1} \int_{1-v}^{1} \frac{u v+1}{4} d u d v=\int_{-1}^{+1} \frac{1}{4} v\left(2 v-\frac{v^{2}}{2}\right) d v=\frac{1}{3}$

