Review:
© 0 joint colt.
Def. for two random variables X and Y that are defined over the same probability space:

$$
F_{X, Y}(u, v)=P\left(X_{\left.\leqslant u, Y_{\leqslant v}\right)=P\left\{\omega \in \Omega, X_{(\omega)} \leqslant u, Y(\omega) \leqslant v\right\}}\right\}
$$

Properties:

$$
\begin{aligned}
& \text { - } P\left(a<X \leqslant b, c C_{K}^{Y} \leqslant d\right)=F_{X, Y}(b, d)-F_{X, Y}(a, d)-F_{X, Y}(b, c)+F_{X, Y}(a, c) \\
& \text { - } \lim _{u \rightarrow+\infty} F_{X, Y}(u, v)=F_{Y}(u), \lim _{v \rightarrow+\infty} F_{X, Y}(a, y)-F_{X}(a)
\end{aligned}
$$

Proposition: A function F is a joint cdt if and only it:
JF. 1: $0 \leqslant F(u, v) \leqslant 1$ for any $(u, v) \in R^{2}$
IF.2: $F(u, v)$ is nondeccrasing in a and nondecrasing in v.
JF.3: $F(u, v)$ is right-continuous in u and right-continuous in v.
SF. 4: $\lim _{u \rightarrow-\infty} F(u, v)=0$ and $\lim _{\nu \rightarrow-\infty} F(u, v)=0$
JF.5. $\lim _{u \rightarrow \infty} \lim _{v \rightarrow \infty} F(u, v)=1$
JF.6. For any $a<b$ and $c<d, F(b, d)-F(a, d)-F(b, c)+F(a, c) \geq 0$
(2) joint pm

If X and Y are discrete-type,

$$
P_{X, Y}(u, \nu)=P(X=u, Y=\nu)=P(\{\omega \in \Omega: X(\omega) \in u, Y(\omega) \in \nu\})
$$

Properties:

$$
P_{X}(u)=\sum_{i} P_{X, Y}\left(u, v_{:}\right) \text {, where } P\left(Y \in\left\{v_{1}, v_{2}, \ldots\right\}\right)=1 \text {. }
$$

Today.
(1) joint pm it
(8) joint pol
(1) joint pm (continued)

Deft. Suppose that X and Y are discrete-type random variables defined over a same probability space (Ω, \tilde{F}, P).

Dot. Suppose that X and Y are discrect-type random variables defined over a same probability space (Ω, \mathcal{F}, P). The conditional port of Y given X is denoted by $P_{Y \mid X}$ and defined as:

$$
P_{Y \mid X}(\nu \mid u)=P(Y=\nu \mid X=u)=\frac{P(X=u, Y=\nu)}{P(X=u)}=\frac{P_{X Y}(u, \nu)}{P_{X}(\omega)}
$$

Proposition: A function ρ is jaunt pant if and only it:
JPMI. P is me-rgative
JPM2: There are finite or countably intine sets $\left\{u_{1}, u_{2}, \cdots\right.$ and $\left\{v, v_{2},\right\}$ sech that $p(u, v)=0$ it

$$
u \notin\left\{u_{1}, u_{2},\right\} \text { or } v \notin\left\{v_{1}, v_{2},\right\}
$$

SPM 3. $\sum_{i} \sum_{j} p\left(u_{i}, v_{j}\right)=1$
 Important remark:

- Recall that two random variables X and Y are independent if and only if $P(X \in A, Y \in B) . P\left(X_{\in} A\right) P(Y=B)$ for any A, B. Real that if X and Y are discrete-type. then X and Y are independent if

$$
P_{x, Y}(u, y)=P(X=u, y=y=)=P(x=1) P(y=y)=P_{x}(u) P_{Y}(0)
$$

- Recall that given E_{1}, E_{2}... for which $E_{1} \cup E_{2} U \cdots=\Omega, E_{i} \cap E_{j=\phi}$ for all $i \neq j$, and $P\left(E_{i}\right) \neq 0$ for all i, we have the law of total probability:

$$
P(A)=\sum_{i=1}^{\infty} P\left(A \cap E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right) P\left(A \mid E_{i}\right)
$$

Similarly, we con write a version of law of total probability for conditional pm.

$$
P_{Y}(\nu)=\sum_{i} P_{X, Y}(u, \nu)=\sum_{i} P_{X}\left(u_{i}\right) \cdot P_{Y \mid X}\left(\nu u_{i}\right)
$$

4.1. [A joint mf]

The joint $\operatorname{pmf} p_{X, Y}(u, v)$ of X and Y is shown in the table below.

	$\mathrm{u}=0$	$\mathrm{u}=1$	$\mathrm{u}=2$	$\mathrm{u}=3$
$\mathrm{v}=4$	0	0.1	0.1	0.2
$\mathrm{v}=5$	0.2	0	0	0
$\mathrm{v}=6$	0	0.2	0.1	0.1

(a) Find the marginal pmfs $p_{X}(u)$ and $p_{Y}(v)$.
(b) Let $Z=X+Y$. Find p_{Z}, the emf of Z.
(c) Are X and Y independent random variables? Justify your answer.
(d) Find $p_{Y \mid X}(v \mid 3)$ for all v and find $E[Y \mid X=3]$.

Solution:
(a) P_{X} :

	$u=0$	$u=1$	$u=2$	$u=3$	$P_{Y}:$		$v=4$	$v=5$	$v=6$
$P_{X}(u)$	0.2	0.3	0.2	0.3			$P_{Y}(v)$	0.4	0.2

(b) $Z=X+Y$. Notice that Z can take values between 4 and 9

	$\omega=4$	$\omega=5$	$\omega=6$	$\omega=7$	$\omega=8$	$\omega=9$
$P_{Z}(\omega)$	0	0.3	0.1	0.4	0.1	0.1

(c) No, since $P_{X, Y}(0,4)=0$, however, $P_{X}(0) P_{Y}(4)=0.2 \times 0.4$
(d)

	$\nu=4$	$\nu=5$	$\nu=6$
$P_{Y \mid X}(\nu \mid 3)$	$\frac{2}{3}$	0	$\frac{1}{3}$

$$
E\left[\left.Y\right|_{V=3}\right]=4 P_{Y \mid X}(4 \mid 3)+5 P_{Y \mid X}(5 \mid 3)+6 P_{Y \mid X}(6 \mid 3)=\frac{14}{3}
$$

(2) joint pot f

Dat. We say random variables X and Y (that ore defined deer the saone probability space) at jointly

$$
F_{X, Y}\left(u_{0}, v_{0}\right)=\int_{-\infty}^{u_{0}} \int_{-\infty}^{u_{0}} f_{X, Y}(u, v) d v d u
$$

- Recall that for any $A \subset R$ (A measurable), we have $P(X \in A)=\int_{A} f_{x}(u) d u$

Similarly, for any $R \subset \mathbb{R}^{2}(R$ measurable $)$, we have $P((X, Y) \in R)=\iint_{R} f_{X, Y}(u, v) d u d v$. In particular,

$$
\begin{aligned}
P(a<X \leqslant b, c<Y \leqslant d) & =F_{X, Y}(b, d)-F_{X, Y}(a, d)-F_{X, Y}(b, c)+F_{X, Y}(a, c) \\
& =\int_{c}^{d} \int_{a}^{b} f_{X, Y}(u, v) d u d v
\end{aligned}
$$

Figure 4.2: $P\{(X, Y) \in$ shaded region $\}$ is equal to $F_{X, Y}$ evaluated at the corners with signs shown.
which also equals $\int_{c}^{d} \int_{a}^{b} f_{x, Y}(u, r) d u d y$, given X and Y are jointly continuous.
Suppose that $\varepsilon>0$ is very small and assume that $f_{x, Y}(u, v)$ is continuous in both X and Y.
Using above equality, we have

$$
P\left(X \in\left(u_{0}-\varepsilon, u_{0}+\varepsilon\right), Y \in\left(\nu_{0}-\varepsilon, \nu_{0}+\varepsilon\right)\right) \approx f_{X, Y}\left(u_{0}, \nu_{0}\right)(2 \varepsilon)^{2}
$$

In particular.

$$
F_{X, Y}\left(u_{0,}, v_{0}\right)=\lim _{\varepsilon \rightarrow 0} \frac{P\left(X \in\left(u_{0}-\varepsilon, u_{0}+\varepsilon\right), Y \in\left(\nu_{0}-\varepsilon, \nu_{0}+\varepsilon\right)\right)}{(2 \varepsilon)^{2}}
$$

This gives a probabilistic interpretation of joint pdf $f_{X, Y}$.
Important remark:
Since X and Y are continuous type, $P(X=u)=P(Y=v)=0$, for any $u, v e R$. In particular,

$$
P(a \leqslant X \leqslant b, c \leqslant Y \leqslant d)=P(a<X<b, c<Y<d) \quad \text { for any } a<b \text { and } c<d
$$

