Review:

O joint colf.

Def. For two random variables X and Y that are defined over the same probability space.

$$\int_{X,Y} (u,v) = P(X \leq u, Y \leq v) = P(\omega \in \mathbb{R}, X(\omega) \leq u, Y(\omega) \leq v)$$

Properties:

$$\lim_{u \to +\infty} F_{\chi,Y}(u,v) = F_{\gamma}(v), \lim_{v \to +\infty} F_{\chi,Y}(u,v) - F_{\chi}(u)$$

Proposition: A Function F is a joint colf if and only if.

JF.1: 0 & F(u,v) & 1 for any (u,v) & Rt

JF.2: F(u,v) is non decreasing in u and nondecreasing in v.

JF.3. F(u,v) is right-continuous in u and right-continuous in v.

JF.4:
$$\lim_{N\to\infty} F(u,v) = 0$$
 and $\lim_{N\to\infty} F(u,v) = 0$

$$JF.5 \cdot \lim_{u \to \infty} \lim_{v \to \infty} F(u,v) = 1$$

@ joint pmf

If X and Y are discrete-type,

Properties.

$$P_{X}(u) = \sum_{i} P_{X,Y}(u,v_{i})$$
, where $P(Y \in \{v_{1},v_{2},...\}) = 1$.

Today.

Ojout put

@ joint pdf

1) joint pm + (continued)

Det. Suppose that X and Y are discrete-type random variables defined over a same probability space (I,F,P).

Det. Suppose that X and Y are discrete-type random variables defined over a same probability space (R,F,P). The conditional pmf of Y given X is denoted by PYIX and defined as.

$$P_{Y|X}(y|u) = P(Y=y|X=u) = \frac{P(X=u,Y=y)}{P(X=u)} = \frac{P_{X,Y}(u,v)}{P_{X}(u)}$$

Proposition. A function ρ is joint pmf if and only if.

JPMI. P is non-negative

JPM2. There are finite or countably infinite sets $\{u_1,u_2,...\}$ and $\{v_1,v_2,...\}$ such that p(u,v)=0 if u & (u,, u2,...) or v & (v,, v2, ...)

JPM3. I I P(ui,vj) =1

Proof. If p satisfies above then $F(u,v) = \sum_{i:u_i \leq u} \sum_{j:v_j \leq v} P(u_i,v_i)$ satisfies JFI - JF6. If p is joint pmf, then above are trivial. Important remork.

. Recall that two random variables X and Y are independent if and only if P(XEA, YEB). P(XEA)P(Y=B) for any A,B. Reall that if X and Y are discrete-type, then X and Y are independent if

. Recall that given E, E2... For which E, UE2U = S2, EinEj= for all i +j, and P(Ei) +0 For all i, we have the law of total probability.

 $P(A) = \sum_{i=1}^{\infty} P(A \cap E_i) = \sum_{i=1}^{\infty} P(E_i) P(A \mid E_i)$ Similarly, we can write a version of law of total probability for conditional pmf. $P(\nu) = \sum_{i=1}^{\infty} P(u_i, \nu) = \sum_{i=1}^{\infty} P(u_i) \cdot P(u_i)$

$$P_{Y}(v) = \sum_{i} P_{X,Y}(u_{i},v) = \sum_{i} P_{X}(u_{i}) \cdot P_{Y|X}(v|u_{i})$$

4.1. **[A joint pmf]**

The joint pmf $p_{X,Y}(u,v)$ of X and Y is shown in the table below.

	u=0	u=1	u=2	u=3
v=4	0	0.1	0.1	0.2
v=5	0.2	0	0	0
v=6	0	0.2	0.1	0.1

- (a) Find the marginal pmfs $p_X(u)$ and $p_Y(v)$.
- (b) Let Z = X + Y. Find p_Z , the pmf of Z.
- (c) Are X and Y independent random variables? Justify your answer.
- (d) Find $p_{Y|X}(v|3)$ for all v and find E[Y|X=3].

Solution:

(a) P _x : -	U=0	u=1	W=2	K=3	Py:		v <u>-</u> 4	1= 5	p=6	
· //					,					
Pu	0.2	0.3	0.2	0.3		P (v)	0.4	0.2	0.4	
/χ Ο	, , , , , ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0~			14.0		0.2		

(b) Z = X + Y. Notice that Z can take values between 4 and 9

	w=4	W≖5	ω <u>+</u> 6	W=7	W=8	w =9
_						
Pz(w)	Q	0.3	0.1	0.4	0.1	0.1
Z						

(c) No, since Pxy (0,4)=0, however, Px (0) Py (4) = 0.2 x 0.4

(d)

	v = 4	ν ₌ 5	ν ₌ 6
P _{YIX} (VI3)	2	0	l
117 (217)	3		3

$$E[Y|_{\nu=3}] = 4. P_{Y|X}(4|3) + 5 P_{Y|X}(5|3) + 6 P_{Y|X}(6|3) = \frac{14}{3}$$

2 joint polf

Def. We say random variables X and Y (that are defined over the same probability space) are jointly continuous-type if there exists a function $f_{X,Y}$, called the joint probability density function (pdf), such that

$$f_{X,Y}\left(u_{o},\nu_{o}\right) = \int_{-\infty}^{u_{o}} \int_{-\infty}^{\nu_{o}} f_{X,Y}\left(u,\nu\right) \ d\nu \ du \ .$$

Recall that for any ACR (A measurable), we have $P(X \in A) = \int_A f_X(w) dw$

Simillarly, for any
$$R \subset R^2$$
 (R maximable), we have $P((X,Y) \in R) = \iint_{R} f_{X,Y}(u,v) \, du \, dv$. In particular,
$$P\left(a \leqslant X \leqslant b, c \leqslant Y \leqslant d\right) = f_{X,Y}(b,d) - f_{X,Y}(a,d) - f_{X,Y}(b,c) + f_{X,Y}(a,c)$$

$$= \iint_{C} f_{X,Y}(u,v) \, du \, dv$$

$$d = \int_{C} \int_{a}^{b} f_{X,Y}(u,v) \, du \, dv$$

Figure 4.2: $P\{(X,Y) \in \text{shaded region}\}\$ is equal to $F_{X,Y}$ evaluated at the corners with signs shown.

which also equals It fxx(u,v) dudy, given X and Y are jointly continuous.

Suppose that $\varepsilon>0$ is very small and assume that $f_{x,y}(u,u)$ is continuous in both X and Y. Using above equality, we have

$$P\left(X \in (u_{-\epsilon,u_{+}+\epsilon}), Y \in (v_{-\epsilon,v_{+}+\epsilon}) \approx f_{X,Y}(u_{0},v_{0}) (2\epsilon)^{2}$$
In particular,
$$f_{X,Y}(u_{0},v_{0}) = \lim_{\epsilon \to 0} \left(X \in (u_{-\epsilon,u_{+}+\epsilon}), Y \in (v_{-\epsilon},v_{+}+\epsilon)\right)$$

This gives a probabilistic interpretation of joint pdf $f_{X,Y}$. Important remark:

Since X and Y are continuous type, P(X=u) = P(Y=v) = 0, for any $u,v \in \mathbb{R}$. In particular, $P(a \leqslant X \leqslant b)$, $c \leqslant Y \leqslant d$) $= P(a \leqslant X \leqslant b)$, $c \leqslant Y \leqslant d$) for any $a \leqslant b$ and $c \leqslant d$