Technologie 24-10/19
Resource control of the series of
$$(\frac{N-N}{2})$$
 , well
 $\frac{1}{12X_{2}} = \exp\left(\frac{(N-N)}{2}\right)$, well
 $E[X] = A W(X) \cdot e^{X}$
 $Shallowled and main of X, $\overline{X} - \frac{M-1}{2}$ is detailed as $N(0,1)$.
 $\cdot F_{\overline{Y}}(0) - P(\overline{X}(u)) - \int_{u}^{1} \frac{1}{12X_{2}} \exp\left(\frac{u}{2}\right) du = \frac{1}{2}(0)$
 $\cdot F_{\overline{Y}}(0) - P(\overline{X}(u)) - \int_{u}^{1} \frac{1}{12X_{2}} \exp\left(-\frac{u}{2}\right) du = 1 - \frac{1}{2}(0) - 0(0)$
 $\cdot Netice that $O(0, -\frac{1}{2}(u) + \ln u) du = \frac{1}{2}(u)$
 $\cdot \frac{F_{\overline{X}}}{2}(0) - P(\overline{X}(u)) - \int_{u}^{1} \frac{1}{12X_{2}} \exp\left(-\frac{u}{2}\right) du = 1 - \frac{1}{2}(0) - 0(0)$
 $\cdot Netice that $O(0, -\frac{1}{2}(u) + \ln u) du = \frac{1}{2}(u) + \frac{1}{2}(u)$$$$

-_∞ - 2_{√u} - 0

. Although we assumed X is continuous-type the same can be used if X is a discrete random variable

Example 3.8.11 Suppose X is a continuous-type random variable with CDF F_X . Let Y be the result of applying F_X to X, that is, $Y = F_X(X)$. Find the distribution of Y.

Solution:
Step 1. Notice that
$$Y = g(X) = F_X(X)$$
. Hence $g = F_X$. We know range of F_X is $[0,1]$ and X is continuous type.
Hence, support of Y is $[0,1]$
Step 2. $P(Y \leq v) = P(F_X(X) \leq v)$, $ve(0,1]$
Since X is continuous type, F_X is increasing. Moreover for any $ve(0,1)$ there exists a unique c_v such that $F_X(c_v) = v$. Hence,
for any $ve(0,1)$ we have $P(F_X(X) \leq v) = P(X \leq c_v) = F_X(c_v) = v$.
Notice that $P(Y \leq v) = 0$ and $P(Y \leq v) = 1$
Step 3. $F_Y(w) = \frac{dF_Y(w)}{du} = 1$ for $ve(0,1]$
Hence Y is a uniformly distributed random variable over $[0,1]$.

Remark :

. Suppose that
$$Y \wedge Unif([0,1]) \& F$$
 is cdf of a continuous type random variable. The above example suggests $X = F(Y)$ is a continuous type random variable with cdf $F_X = F$
Hence, if we have a method for generating $Y \sim Unif([0,1])$ random variable, we can generate any continuous-type random variable with cdf F , by pass Y through F'