Review.

O exponential distribution.

T has caponential distribution with parameter $\lambda > 0$, $T \sim eap(\lambda)$

$$f_{\tau}(t) = \begin{cases} \lambda e^{\lambda t} & t \geqslant 0 \\ 0 & \text{o.u} \end{cases}$$

$$cdf. \quad P(T \leq t) = F_{\tau}(t) = \begin{cases} 1 - e^{\lambda t} & t \geqslant 0 \\ 0 & \text{o.u} \end{cases}$$

· complimentary odf.
$$P(T,t)=F_{r}^{c}(t)=\begin{cases} e^{\lambda t} & t>0\\ 0 & 0.W. \end{cases}$$

. Mean & Variance :
$$E[T] = \frac{1}{\lambda}$$
, $Var(T) = \frac{1}{3^2}$

· Memoryless property:

@relation between geometric distribution and exponential distribution.

Let X_h denote a geometric random variable with parameter $\rho = \lambda h$ for all h > 0.

Let Th=hXh. We have

$$P(T_h \rightarrow t) \longrightarrow P(T \rightarrow t)$$
 as $h \rightarrow 0$

where T is a random variable with parameter $\lambda > 0$.

Today:

- a Important remark about continuous random voriable
- @ Poisson process as a limit of time_scaled Bernoulli process
- 3 Poisson process
- @ Erlang distribution

Olmportant remark about continuous random variable:

Recall that a continuous random variable X, is defined by the relation between cdf and pdf.

 $P(X \leq a) = F_{x}(a) = \int_{-\infty}^{a} F_{x}(u) du$

As we discussed before

$$P(\alpha < X \leq b) = F_{\chi}(b) - F_{\chi}(\alpha) = \int_{a}^{\alpha} f_{\chi}(u) du$$

$$P(a < X \leq b) = F_X(b) - F_X(a) = \int_a^a f_X(u) du$$

Honce,

$$P(X>0) = f_X^c(a) = 1 - f_X(a) = \int_a^\infty f_X(u) du$$

and in generall, for any $A \subseteq IR$.

$$P(X \in A) = \int_A f_X(u) du$$

@ Poisson process as a limit of time-scaled Bernoulli process.

Recall that a Bernoulli process is given by $(X_1, X_2, ...)$ where for each n, X_n is a Bernoulli random variable with parameter p. Also, recall that it is a random process, i.e.,

(i) For each ne{1,2,3,...}. Xn is a random variable. More specifically, Xn~Bor(p)

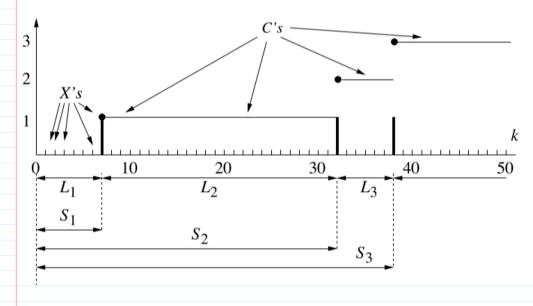
(ii) for each $\omega \in \Omega$, $(X_1(\omega), X_2(\omega), X_3(\omega), ...)$ is a sequence of zeros and ones.

Recall that there are three other random variables that are related to Bernoulli process.

. Ln = number of trials between (n-1) th success and nith success. Recall that Li ~ Geo(p)

. Sr = number of trials till the rth success. Recall that Sr~NBi(r,p)

. Cn = number of successes in the first n trials. Recall that Cn ~ Bi(n,p)



Consider the following setting: customer are entering bank, we have a clock that ticks every has seconds, and define

$$X_{n} = \begin{cases} 1 & \text{if at least one customer entered the bank during time } (n-1)h, nh \end{cases}$$

$$X_{n} = \begin{cases} 0 & \text{otherwise} \end{cases}$$

Let us make the following assumptions:

Let us make the following assumptions:

(*) For any h, 0, $(X_1^{(h)}, X_2^{(h)}, ...)$ is a Bernoulli process with parameter ρ .

(**) For small h, 0, number of customers that can enter the bank during interval ((n-1)h, nh] is at most 1.

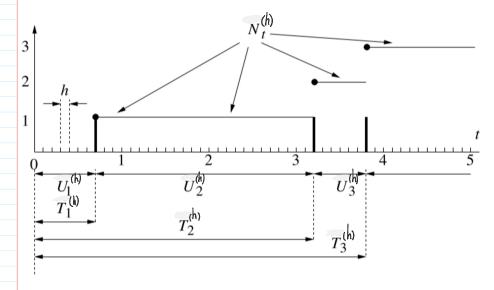
(***) $p = \lambda h$ for all small h > 0. This can be justified the same way as we did in the previous session, i.e., by showing that p = p for all small h > 0. and using the same argument to show p = ap.

Assume that how is small. Let us consider the timed counterpart of $L_n^{(h)}$, $S_r^{(h)}$ and $C_n^{(h)}$.

. U_n = time it tokes till the n'th arrival. Notice that $U_n^{(h)} = h L_n^{(h)}$.

. $T_r^{(h)}$ = time it takes till r'th arrival. Notice that $T_r^{(h)} = h S_r^{(h)}$.

. $N_t^{(h)}$ = number of times $X_i^{(h)} = 1$ for i < t. Notice that $N_t^{(h)} = C_{th} = 1$. Intuitively speaking. $N_t^{(h)}$ is very close the number arrivals till time t, i.e., we are just ignoring arrivals during time interval $(h t | t_n)$, th]



As h = 0, we have.

. distribution of $U_n^{(h)}$ converges to exponential distribution with parameter 9.

$$P(U_n^{(h)} > t) = P(L_n^{(h)} > \frac{t}{h}) = (1 - \lambda h)^{\lfloor \frac{t}{h} \rfloor} \longrightarrow e^{-\lambda t} \text{ as } h \longrightarrow 0.$$

distribution of $N_{t}^{(h)}$ converges to Poisson distribution with parameter λt . Notice that $N_{t}^{(h)} \sim \text{Bi}\left(\left\lfloor \frac{t}{h} \right\rfloor, \rho_{h}\right)$ and $\rho_{h} \cdot \left\lfloor \frac{t}{h} \right\rfloor = \lambda h \cdot \left\lfloor \frac{t}{h} \right\rfloor \approx \lambda t$. Hence, by poisson approximation $P(N_{t}^{(h)} = k) \longrightarrow e^{-\lambda t} \cdot \frac{(\lambda t)^{k}}{k!}$

Hence, the limit of time-scaled Bernoulli process is a continuous process which is called poisson process.

3 Poisson process.

Def: Let $\lambda_{>0}$. A paisson process with rate λ is a counting process $N = (N_t; l_{\geq 0})$ such that

N.I. N has independent increament: for any $t_0 \leqslant t_1 \leqslant \dots \leqslant t_n$, the increaments

 $N_{t_2} - N_{t_1}$, $N_{t_3} - N_{t_2}$, ..., $N_{t_n} - N_{t_{n-1}}$

are independents.

N.2: The increament $N_{L}-N_{s}$ has poisson distribution with parameter $\lambda(t-s)$,

$$P(N_{\xi}-N_{s}=k)=e^{\lambda(\xi-s)}\frac{(\lambda(\xi-s))^{k}}{k!}$$

$$N.3. N_{0}=0.$$

Interpretation:

. N is a random process, this means that

(i) if we fix t>0. N_t is a random variable, i.e., $N_t: \mathcal{Q} = \{0,1,2,3,...\}$ In particular N_t is a discrete random variable, and more specifically $N_t \sim Poi(\lambda t)$

(ii) if we fix $\omega \in \Omega$, $N(\omega)$ is a sample path, i.e., it is a function of time: $N(\omega) : [0,+\infty) \longrightarrow [0,1,2,3,...]$, i.e., $N_{\xi}(\omega)$ is a non-negative integer.

. N is a counting process. Intuitively speaking, this means that N counts number of events that has happened over time, i.e.,

N_t, number of occurance of an event over time interval [0,t]

 $N_t - N_s$: number of occurance of an event over time interval (s,t]

. One example to visualize the above properties is the customers that appear over time in a bank. Let N denote this process and assume N is a poisson process:

- (i) Nt. number of customers that showed up during time interval [0,t]
- (ii) N_t-N_s, number of customers that showed up during time interval (s,t)
- (iii) independent increament means number of customers that showed up during intervals (t_1, t_2) and (t_3, t_4) for any $0 \le t_1 \le t_2 \le t_3 \le t_4$ are independent.
- (iv) $N_0 = 0$ means at the point of openning the bank, there is no customer inside the bank.

Related voriables.

Associated with the poisson process $N = (N_{t}, t_{\geq 0})$, there are important random variables:

 $U_n = the time between (n-1)'th occurance a nth occurance,$

i.e., inter-arrival time between the (n-1)th customer and n'th customer.

 \otimes For any $n \in \{0,1,2,...\}$, we define

 $T_n = time of n'th occurance$

i.e., time at which n'th customer entered the bank.

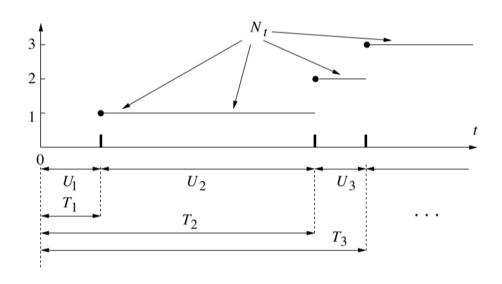


Figure 3.9: A sample path of a Poisson process.

The random variables associated with the poisson process have the following relations: $N_{t} = \prod_{n=1}^{\infty} I_{1} = \{T_{n} \leq t\}$

$$T = \int_{n=1}^{\infty} \left[T_n \leqslant t \right]$$

$$T_n = \min \left\{ t : N_{t=n} \right\} = \min \left\{ t : N_{t \ge n} \right\}$$

$$T_n = U_{t+1} + U_{t+1} + U_n$$

where

$$I\left\{T_{n} \leqslant t\right\} = \begin{cases} 1 & \text{if } T_{n} \leqslant t \\ 2 & \text{if } T_{n} \leqslant t \end{cases}$$

$$I\left\{T_{n} \leqslant t\right\} = \left\{0 \quad \text{if } T_{n} > t\right\}$$

Distribution of Un:

Notice that by the argument of previous section, we expect Un to be a exponentially distributed random variable with parameter 2. We can prove the same property by deffinition of Poisson process.

$$P(U_n > t) = P(\{after (n-1)th arrival, there is no arrival over an interval of length $t\})$

$$= e^{-\lambda t} \frac{(\lambda t)^{\alpha}}{0!} = e^{-\lambda t},$$$$

where we used the fact that number of arrivals over any interval of length t is a poisson random variable with parameter It.

@ Erlang distribution

Recall that $T_n = U_{1+}U_{2+--}U_n$ is the sum of a exponential random variables. Notice that

$$\{T_n > t\} = \{\text{ number of arrivals in } [a,t] \text{ is less than } n\} = \{N_t < n\} = \{N_t < n\}$$

$$F_{T_{n}}^{c}(t) = P(T_{n} > t) = P(N_{t} \leq n-1)$$

$$= \sum_{k=0}^{n-1} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}$$

$$f_{T_{n}}(t) = \frac{dF_{T_{n}}^{c}(t)}{dt} = \sum_{k=0}^{n-1} \left(\lambda e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} - e^{-\lambda t} \frac{(\lambda t)^{k-1}}{k!} \cdot k\lambda\right)$$

$$= \sum_{k=0}^{n-1} \lambda e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} - \sum_{k=1}^{n-1} \lambda e^{-\lambda t} \frac{(\lambda t)^{k-1}}{(k-1)!}$$

$$= \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}$$

Def. We say a continuous random variable T has evolving distribution with parameters $r \in \{1,2,3,...\}$ and $p \in [0,1]$ if $\frac{1}{4} - \frac{1}{4} + \frac{1}{4} +$ $f_{+}(t) = \begin{cases} \frac{\lambda e^{-\lambda t} (\lambda t)^{r-1}}{(r-1)!}, & t \ge 0 \end{cases}$

$$f(r)$$
 $\begin{cases} \frac{1}{(r-1)!} & \text{if } r > 0 \end{cases}$

$$f_{+}(t) = \begin{cases} (r-1)! & -1 \\ 0 & , t < 0 \end{cases}$$

$$F_{T}(t) = \begin{cases} 1 - \sum_{K=0}^{r-1} e^{-\lambda t} \frac{(\lambda t)^{K}}{K!}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Mean & variance:

$$E[T] = \int_{-\infty}^{+\infty} u \, f_{T}(u) \, du = \int_{-\infty}^{+\infty} u \cdot \frac{\lambda e^{-\lambda u} (\lambda u)^{-1}}{(-1)!} \, du = \frac{r}{2} \int_{-\infty}^{+\infty} \frac{\lambda e^{-\lambda t} (\lambda u)^{T}}{r!} \, du = 1$$

since $\frac{\lambda e^{-\lambda t} (\lambda u)^r}{r!}$ is the pdf of an Erlang distributed random variable with parameters (r+1,p)

$$E[T^{2}] = \int_{-\infty}^{+\infty} u^{2} \frac{\lambda e^{-\lambda u} (\lambda u)^{r-1}}{(r-1)!} du = \frac{(r+1)r}{\lambda^{2}} \int_{-\infty}^{+\infty} \frac{\lambda e^{-\lambda u} (\lambda u)^{r+1}}{(r+1)!} du = \frac{r(r+1)}{\lambda^{2}}$$

by a simillar reasoning as before.

$$Var(T) = E[T^2] - (E[T])^2 = \frac{r(r+1)}{g^2} - \frac{r^2}{g^2} = \frac{r}{g^2}$$