Lecture 19 - 10/5 Wednesday, October 05, 2022 9:56 AM Keview: Outrion bound. $P(A_1 \cup \cup A_n) \preccurlyeq \sum_{i=1}^{n} P(A_i)$ Onetwork outrge probability & distribution of capacity of flow network @ Cummulative distribution function: $F_{X}(c) = P(X \leq c) = P(\{\omega \in \mathcal{U}: X(\omega) \leq c\})$, for any c > 0. main properties: F is cdf of some random variable X if & only if. F.I. increasing . axb => F (a) < F (b) F.2. $\lim_{c \to -\infty} F(c) = 1$, $\lim_{c \to -\infty} F(c) = 0$ F.3. F is right continuous, i.e., $\lim_{u \to c^+} F(u) = F(c)$ other properties. (i) $\Delta F_{x}(c) = F_{x}(c) - F_{x}(c) = P(X=c)$ (ii) $F_{\mathbf{x}}(\mathbf{c}) = \lim_{\mathbf{u} \to \mathbf{c}^-} F_{\mathbf{x}}(\mathbf{u}) = P(\mathbf{X} < \mathbf{c})$ (iii) For any a < b, $F_x(b) - F_x(a) = P(a < X \le b)$ (4) Continuous random variable. Det. X is continuous-type random variable if $F_{X}(c) = \int_{-\infty}^{\infty} f_{X}(u) du$. Fx is the probability density Function of X $f_{X}(u) \ge 0$ for all u.e.R. $\int f_{X}(u) dx = 1$. Support of f_x is the set u for which $f_x(u) > 0$. If fx is continuous at u, then Fx(u) = fx(u) . Interpretation of fx: suppose that fx is continuous at u, $P(u+\epsilon < X < u-\epsilon) = f_{X}(u) \cdot 2\epsilon + o(\epsilon)$, where $\lim_{\epsilon \to 0} \frac{o(\epsilon)}{\epsilon} = 0$. P(X=u)=0 For all continuous random variables. 3 Uniform distribution $f_{\tau}(u) = \left\{ \frac{1}{b-a} \quad a \leq u \leq b \right\},$ $\mu_{X} = E[X] = \frac{b+a}{2}$

$$f_{\chi}(w) = \begin{cases} \frac{1}{b-a} & \alpha \leq w \leq b \\ 0 & 0 \\ 0 & 0 \\ \end{cases}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \alpha \leq w \leq b \\ 0 & 0 \\ \end{pmatrix}$$

$$\frac{1}{b(x)} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b} \\ 0 & 0 \\ \end{pmatrix}$$

$$\frac{1}{b(x)} \qquad \begin{pmatrix} \frac{1}{b(x)} & \frac{1}{b(x)} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ 0 \\ 0 \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ \frac{1}{b-a} \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ \frac{1}{b-a} \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ \frac{1}{b-a} \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ \frac{1}{b-a} \\ \frac{1}{b-a} \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ \frac{1}{b-a} \\ \frac{1}{b-a} \\ \frac{1}{b-a} \\ \end{pmatrix}$$

$$\frac{1}{b-a} \qquad \begin{pmatrix} \frac{1}{b-a} & \frac{1}{b-a} \\ \frac{1}{b-$$

• complexiting cdf.

$$F_{\tau}(k) = P(X > k) = 1 - F_{X}(k)$$

$$F_{\tau}(k) = \begin{bmatrix} e^{2kt} & t \ge 0 \\ 1 & 0.kt. \end{bmatrix}$$
• Annexts:

$$E[T^{n}] = \int_{0}^{n} u^{k} \lambda e^{2kt} du = -u^{k} e^{2kt} \int_{0}^{n} u^{-1} e^{2kt} du$$

$$= 0 + \frac{\alpha}{\lambda} E[T^{n+1}]$$
• Annexts:

$$E[T^{n}] = \frac{1}{\lambda}$$
• Ver(T) = $E[T^{2}] - (E[T])^{2} - \frac{\alpha}{\lambda} + \frac{1}{\lambda} - (\frac{1}{\lambda})^{2} + \frac{1}{\lambda}$
• Ver(T) = $E[T^{2}] - (E[T])^{2} - \frac{\alpha}{\lambda} + \frac{1}{\lambda} - (\frac{1}{\lambda})^{2} + \frac{1}{\lambda}$
• Menagless property: rotice that $P(T > c) = e^{2kt}$

$$P(T > s + t | T > s) = \frac{P(T > s, T > s + t)}{P(T > s)}$$
• $-\frac{e^{2ks}}{e^{2ks}} = e^{-kt} - P(T > t)$
If T is lifetime of a long, given that the long hus been working for s time wets,
the pabability that it will be working for t additional time works is some as if
we replace the long with a new one and then look at the probability of this event!
Ogenetive distribution is expended distribution
(make the lettime of a blok. Let us make the following assumptions:
(a) Suppose that the probability that the bulb fails between any two bicks is p , independent of
cogething che, and that $P_{r} \to 0$ is $k \to 0$.

cverything else, and that p____ as h____0. 1h / σ Let X_h denote the number of ticks till Faliure. We have, time till faliwe = hX_h $P(X_h = k) = (1 - p_h) \frac{k - 1}{p_h}, \frac{1}{0 - h} \frac{1}{2h} \frac{1}{3h} \frac{1}{4h} \frac{1}{5h} \frac{1}{6h}$ Now suppose we have another clock that ticks every 2h seconds. Let P_{2h} denote the probability of Faliure of bulb over any interval of length 2h. Notice that $P(A) = P(B_1 \cup B_2)$ $= P(B_1) + P(B_2) - P(B_1 A B_2)$ A: Faliure in interval [0,2h], B.: Faliure in interval [0,h], B.: Faliure in interval [h,2h] Now, if h is small enough, then p is small and we have px 2p. Using a simillar argument, and a bit of algebra, we can show that for any cro, prop for all h small enough. Hence, the following assumption is not far from being true. (***) Suppose that p= 2h For some fixed constant 2,2 and any h,0. Now, given (*), (**), and (***), let us calculate the time it take for the bulb to Fail. Notice that if Xh=k, then the bulb Failed at some time between (k-1)h and kh. Let Th = h Xh denote the time till tick at which the bulb failed. We have, $P(T_{h} > t) = P(hX_{h} > t) = P(X_{h} > \frac{t}{h}) = (I - P_{h})^{\lfloor \frac{t}{h} \rfloor - 1} = (I - \lambda h)^{\lfloor \frac{t}{h} \rfloor - 1}$ Notice that since X_{h} is an integer, the following events are the same: $\left\{X, \frac{t}{h}\right\} = \left\{X > \lfloor \frac{t}{h} \rfloor\right\}$

Now, recall that $\left(1-\frac{x}{a}\right)^a \longrightarrow e^{-x}$ as $a \longrightarrow \infty$ Hence, defining h = 1 we have $(I - \lambda h)^{\left\lfloor \frac{t}{h} \right\rfloor} = (I - \frac{\lambda}{a})^{\left\lfloor \frac{t}{a} \right\rfloor} = (I - \frac{\lambda}{a})^{ta} \cdot \frac{(I - \frac{\lambda}{a})^{ta}}{(I - \frac{\lambda}{a})^{ta}}$ that Notice that $(1-\frac{\lambda}{a})^{t}$ (i) $(1-\frac{\lambda}{a})^{ta} = \left(\left(1-\frac{\lambda}{a}\right)^{a}\right)^{t} = e^{-\lambda t}$ as $a_{-+\infty}$ (ii) $0 < \frac{\left(1-\frac{\lambda}{\alpha}\right)^{[L_{\alpha}]}}{\left(1-\frac{\lambda}{\alpha}\right)^{t_{\alpha}}} = \left(1-\frac{\lambda}{\alpha}\right)^{[t_{\alpha}]-t_{\alpha}} \leq 1$ and that $\lfloor ta \rfloor - ta _ 0$ as a $\neg \infty$; hence $(\lfloor -\frac{1}{a} \rfloor)^{\lfloor ta \rfloor - ta} \longrightarrow 1$ as a $\neg \infty$. Hence, by above observations: $P(T_h > t) \longrightarrow e^{\lambda t}$ as $h \longrightarrow 0$ which is the complimentary cdf of an exponential random variable. Hence, given (*), (**), and (***), the life time of the bulb is an exponential random variable. T with parameter λ . In particular, distribution of $T_h = hX_h$ converges to distribution of T as $h \rightarrow 0$.