Review:
Cumulative distribution function:
Def. coff of X is denoted by F_{x} and defined as $F_{x}(c)=P\left(X_{\leqslant c}\right)$ for any $c \in R$. main properties:
F.1. increasing: $a<b \Rightarrow F_{x}(a)<F_{x}(b)$
F.2. $\lim _{c \rightarrow \infty} F_{x}(c)=1, \lim _{c \rightarrow-\infty} F_{x}(c)=0$
F.3. F_{x}^{c} is right continuous, ic., $\lim _{\rightarrow-\infty} F_{x}(u)=F_{x}(c)$

Proposition: any function that satisfies above property is col f of some random variable. Important implications:
(i) $\Delta F_{x}(c)=F_{x}(c)-F_{x}(c-)=P(x=c)$
(ii) $F_{x}(c-)=\lim _{u \rightarrow c^{-}} F_{x}(u)=P(X<c)$
(iii) For any $a<b, F_{x}(b)-F_{x}(a)=P(a<x \leqslant b)$

Today:
(1) Continuous random variable
(2) Uniform random variable
(1) Continuous random variable

For a discrete random variable, we have $F_{x}(c)=\sum_{u: u \leqslant c} P_{x}(u)$

Def. A randan variable X is a continneaus type random variable if there exist a function f_{x}, called probability density function (pot) of X such that

$$
F_{x}(c)=\int_{-\infty}^{c} f_{x}(u) d u . \text { for any } c \in \mathbb{R}
$$

Def: support of a pat f_{x} is the set of " for which $f_{x}(u)>0$. Important remarks:
(i) Suppose that f_{x} is continuous at point c. By fundamental theorem of calculus. $f_{x}(c)=F_{x}^{\prime}(c)$
(ii) For a contimuous-type random variable X, the oof F_{x} is continuous.
(iii) If F_{x} is continuous at point c, then $F_{x}(c-)=F_{x}(c)=F_{x}(c+) \Rightarrow P(X=c)=\Delta F_{x}(c)=0$. In particular. $P(X=c)=0$ for a continuous -type random variable X, and we have

$$
P(a<X<b)=P(a \leqslant X<b)=P(a<X \leqslant b)=P(a \leqslant X \leqslant b)
$$

(in) Notice that by axioms of probability, if $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$, then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Hence, for any sequence of numbers $x_{1}, x_{2}, x_{3}, \ldots$. for a continuous -type random variable X, we have:

$$
P\left(X \in\left\{x_{1}, x_{2}, \ldots\right\}\right)=\sum_{i=1}^{n} P\left(X=x_{i}\right)=0
$$

In particular, $P(X$ is a natural number $)=0$

$$
P(X \text { is a rational number })=0
$$

Interpretation of pdt:
Suppose that f_{x} is continuous at point c. We have,

$$
\lim _{h} \frac{F_{x}(c+h)-F_{x}(c-h)}{2 h}=\lim _{h} \frac{f_{x}(c+h)-f_{x}(c)}{2 h}+\frac{F_{x}(c)-f_{x}(c-h)}{2 h}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{F_{x}(c+h)-f_{x}(c-h)}{2 h} & =\lim _{h \rightarrow 0} \frac{f_{x}(c+h)-f_{x}(c)}{2 h}+\frac{f_{x}(c)-f_{x}(c-h)}{2 h} \\
& =\frac{f_{x}(c)}{2}+\frac{f_{x}(c)}{2}=f_{x}(c)
\end{aligned}
$$

where we used the fact that $F_{x}^{\prime}(c)=f_{x}^{2}(c)$. Hence, wc can write

$$
\frac{F_{x}(c+h)-f_{x}(c-h)}{2 h}=f_{x}(c)+0(c)
$$

where $\lim _{h \rightarrow 0} 0(1)=0$. Equivalently, we can write

$$
F_{x}(c+h)-F_{x}(c-h)=2 h f_{x}(c)+a(h)
$$

where $\lim _{h \rightarrow \infty} \frac{o(h)}{h}=0$, ie., och converges to zero faster than h.
Hence, $f_{x}(c)$ is related to the probability of X being in a small neighborhood of c :

$$
P(c-h<X<c+h)=2 h f_{x}(c)+o(h)
$$

properties of f_{x} :
(i) For any $a<b: P(a<x \leqslant b)=F_{x}(b)-F_{x}(a)=\int_{a}^{b} f_{x}(u) d u \in[0,1] \Rightarrow f_{x}$ is non negative.
(ii) $I=\lim _{b \rightarrow+\infty} \lim _{a \rightarrow-\infty} F_{x}(b)-F_{x}(a)=\lim _{b \rightarrow+\infty} \lim _{a \rightarrow-\infty} \int_{a}^{b} f_{x}(a) d u \Rightarrow \int_{-\infty}^{+\infty} f_{x}(a)=1$

Mem, variance, Lotus
We con recycle all we had for discrete random variables by replacing summation with integration, \& pit with pot, ie., for a continuous -type random variable X

$$
\begin{aligned}
& \mu_{x}=E[x]=\int_{-\infty}^{+\infty} f_{x}(w d u \\
& \operatorname{Vor}(x)=E\left[\left(x-\mu_{x}\right)^{2}\right]=\int_{-\infty}^{+\infty}\left(u-\mu_{x}\right)^{2} f_{x}(u) d u \leadsto \text { masurures haw spread out } x \text { is } \\
& \operatorname{Var}(x)=E\left[x^{2}\right]-(E[x])^{2}
\end{aligned}
$$

$$
o_{x}=\sqrt{\operatorname{Vor}(x)} \leadsto \text { same unit as } X
$$

LOTUS: $E[g(x)]=\int_{-\infty}^{+\infty} g(u) f_{x}(u) d u$.

$$
\begin{aligned}
\operatorname{Var}(g(x)) & =E\left[g(x)^{2}\right]-(E[g(x)])^{2} \\
& =\int_{-\infty}^{+\infty} g(u)^{2} f_{x}(u) d u-\left(\int_{-\infty}^{\infty} g(u) f_{x}(u) d u\right)^{2}
\end{aligned}
$$

Standardized version: $\frac{X-\mu_{x}}{\sigma_{x}} \leadsto$ dimensionless
and all interpretations are valid as before.

$$
\begin{aligned}
& E[a X+b]=a E[X]+b \\
& \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
\end{aligned}
$$

(2) Uniform random variable:

Def. We say X is uniformly distributed over $[a, b]$ if

$$
f_{x}(a)=\left\{\begin{array}{cc}
\frac{1}{b-a} & a \leqslant u \leqslant b \\
0 & 0 . W
\end{array}\right.
$$

kth moment: $E\left[X^{k}\right]=\int_{a}^{b} u^{k} \cdot \frac{1}{b-a} d u=\left.\frac{1}{b-a} \cdot \frac{u^{k+1}}{k+1}\right|_{a} ^{b}=\frac{b^{k+1}-a^{k+1}}{b-a} \cdot \frac{1}{k+1}$

$$
\mu_{x}=E[x]=\frac{b^{2}-a^{2}}{1} \cdot \frac{1}{a}=\frac{b+a}{a}
$$

$$
\begin{aligned}
& \mu_{x}=E[X]=\frac{b^{2}-a^{2}}{b-a} \cdot \frac{1}{2}=\frac{b+a}{2} \\
& \operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{b^{3}-a^{3}}{b-a} \cdot \frac{1}{3}-\frac{(b+a)^{2}}{4}=\frac{b^{2}+a b+a^{2}}{3}-\frac{b^{2}+2 a b+a^{2}}{4}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

