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1. [14 points] A drawer contains 4 black, 6 red, and 8 yellow socks. Two socks are
selected at random from the drawer.

(a) What is the probability the two socks are of the same color?

Solution: Let B, R, and Y denote the sets of black, red, and yellow socks, with
cardinalities 4, 6, and 8, respectively. A suitable choice of sample space for this
experiment is

Q={S:|S|=2and SC BURUYY},

where S represents the set of two socks selected. The cardinality of €2 is

4+6+8 18
o= (77 = ()

Let F' be the event F'={S:|[S|=2and SC Bor S C Ror S CY}. Then,

4 6 8
F| = = 15 4+ 28 = 49.
|F| (2)+(2)+(2> 6+ 15+ 28 9

49
153"

Thus,
P(F)

(b) What is the conditional probability both socks are yellow given they are of the
same color?

Solution: Let G ={S:|S|=2and S C Y}. Note that G C F and |G| = (g) =

28. Therefore,
P(FG) P(G) 28 4
(GIF) P(F) P(F) 49 7

2. [14 points| The two parts of this problem are unrelated.

(a) Suppose A, B, and C' are events for a probability experiment such that B and C'
are mutually independent, P(A) = P(B¢) = P(C') = 0.5, P(AB) = P(AC) = 0.3,
and P(ABC) = 0.1. Fill in the probabilities of all events in a Karnaugh map.
Show your work but use the map on the right to depict your final answer.

Solution: Start filling P(ABC) = 0.1.
Then use P(CA) = 0.3 to get P(CAB°) = P(CA) — P(CAB) =0.3—-0.1 =0.2.
Similarly, use P(BA) = 0.3 to get P(BAC®) = P(BA) — P(BAC) =03 —-0.1 =



0.2.

Then, use independence of C' and B to get P(CBA®) = P(CB) — P(BAC) =
P(C)P(B) — P(BAC) = 0.52 — 0.1 = 0.15.

Then, use P(B) = 0.5 to get P(C°BA°) = P(B) — P(BAC) — P(BAC®) —
P(CBA®) =0.5—-0.1-0.2—0.15 = 0.05.

Similarly, use P(C) = 0.5 to get P(CB°A¢) = P(C) — P(CAB°) — P(CBA) —
P(CBA®) = 0.5— 0.2 — 0.1 — 0.15 = 0.05.

Then, use P(A) = 0.5 to get P(AB°C¢) = P(A) — P(CAB°) — P(CBA) —
P(CAB®) =0.5—0.2 — 0.1 — 0.2 = 0.

Finally, the remaining probability to add up to one is P(C°B°A¢) = 0.25.
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(b) Let A, B be two disjoint events on a sample space 2. Obtain a formula for the
probability of A occurring before B in an infinite sequence of independent trials.

Solution: A and B occur with probabilities P(A) and P(B), respectively. Con-
sider the first trial:

First Trial: Either A occurs or B occurs or neither A nor B occurs.

e If A occurs, then the probability that A occurs before B is 1.
e If B occurs, then the probability that A occurs before B is 0.
e If neither A nor B occurs, then the process starts over.

Let s be the probability that neither A nor B occurs at any independent trial.
Then s =1 — P(A) — P(B) due to AN B = (). Therefore,
P(Abefore B) = P(A) + sP(A) + s*P(A) + -+ + s"P(A) + - - -

_ S 1 P4
_P(A>;S =P = P+ rBy

Alternatively: Let s be the probability that neither A nor B occurs in a given
independent trial. If neither A nor B occurs on the first trial, then the process
starts over. So P(Abefore B) = P(A) + sP(Abefore B). Solving this equation for

P(A before B) yields P(A before B) = }:(i) = P(AI;SFAP),(B).

3. [20 points] Bob performs an experiment comprising a series of independent trials.
On each trial, he simultaneously flips a set of three fair coins.

(a) Given that Bob has just had a trial with all 3 coins landing on tails, what is the
probability that both of the next two trials will also have this result?
Solution: Since the trials are independent, the given information is irrelevant.
P(next 2 trials result in 3 tails) = (1/8)* = 1/64.
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(b) Whenever all three coins land on the same side in any given trial, Bob calls the
trial a success. Obtain the pmf for K, the number of trials up to, but not including,
the second success.

Solution: The probability that 1 success comes in the first k trials, where the
next trial will result in the second success, can be expressed as:

wr= () () ()

(c) Alice conducts an experiment like Bob’s, except that she uses 4 coins for the first

trial, and then she obeys the following rule: Whenever all of the coins land on the
same side in a trial, Alice permanently removes one coin from the experiment and
continues with the trials. She follows this rule until the third time she removes a
coin, at which point the experiment ceases. Obtain E[N]|, where N is the number
of trials in Alices experiment.
Solution: N the number of trials in Alice’s experiment, can be expressed as
the sum of 3 independent random variables, X, Y, and Z. X is the number of
trials until Alice removes the first coin, Y the number of additional trials until
she removes the second coin, and Z the additional number until she removes the
third coin. We see that X is a geometric random variable with parmeter 1/8, Y
is geometric with parameter 1/4, and Z geometric with parameter 1/2. Hence,

EIN|=E[X|+EY]|+E[Z]=8+4+2=14.

4. [14 points] Suppose S and T represent the lifetimes of two phones, the lifetimes are
independent, and each has the exponential distribution with parameter A = 1.

(a) Obtain P{|S —T| < 1}.
Solution: P{|S —T| <1} = [ [, e e "dudv, where R is the infinite strip in the
positive quadrant defined by R = {u > 0,v > 0, |u — v| < 1}. The complement of
R in the positive quadrant is the union of the region S = {u > 1,0 <v <wu—1}
below R, and a similar region, S, above R. By symmetry, P{(S,T) € S;} =
P{(S,T) € Sy} so that P{|S —T| <1} =1-2P{(S,T) € S;}. Since

P{(S,T) € 51} = / / e " Ududv
0 v+1
= / e”/ e “dudv
0 v+1
0o -1
= / ey = 6—,
1 2

it follows that P{|S —T|<1}=1—¢""

ALTERNATIVELY, |S — T is the remaining lifetime of the other phone, after one

phone fails. By the memoryless property of the exponential distribution, it follows

that |S — T'| has the same distribution as S or T. So P{|S —T| <1} =1—-¢""
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(b)

Let Z = (S — 1)%. Obtain fz(c), the pdf of Z, for all c.
Solution: Clearly P{Z > 0} = 1. For ¢ > 0, Fz(c) = P{(S —1)? < ¢} =
P{—y/c<S—-1< c}=P{1—/c<S<1+./c}. So

( 0 c<0
Fyz(c) = flljf etdu = e 1TVe —eT17Ve < c< 1
\ fOHﬁ e Uduy =1— e 1-Ve c>1

Differentiating with respect to ¢ yields

( 0 c<0
e 1tV —1-ve
e”1-Vve
. e =2l

5. [20 points] An X-ray source transmits photons towards a detector at mean rate A = 8
photons/msec according to a Poisson process. Suppose each photon transmitted is
detected independently with probability p = 0.25.

(a)

()

What is the pdf of the time the fifth photon is transmitted (measured in msec)?
Solution: The distribution of the r*" arrival has the Erlang distribustion with
parameters A and r. Taking r = 5 and A = 8 gives the pdf: f(t) = £Le™® for
t > 0.

Given n photons are transmitted in a certain period, what is the probability k
photons are detected. (Assume n > 1 and 0 < k < n.)

Solution: Each photon transmitted represents an independent trial, with prob-
ability of success (i.e. detection) equal to p. Thus, the number detected has
the binomial distribution with parameters n and p. So P{k photons detected} =
(7)(0.25)%(0.75)"*.

What is the pmf for the number of photons detected in an interval of duration 10
msec? Simplify your answer as much as possible. (Hint: Let X denote the number
of photons transmitted and Y the number detected. Obtain the pmf of Y using
the law of total probability.)

Solution: In the notation of the hint, Y has the Poisson distribution with param-
eter 10\ = 80, and, given Y = n, X has the binomial distribution with parameters
n and p. Thus, py x(n, k) = (80)2—!6780 (1)p"(1—p)"=*. To find the marginal pmf, py,



we sum over n:

o)

e = 3 ELEE (W)

n=k
P8R & (80(1 — p))
R (n—k)!

n=k
(80p>k€—80 B 6—20(20)k
==
That is, the number of photons detected has the Poisson distribution with pa-
rameter (i.e. mean) 20. (Note: So independent subsampling maps one Poisson
distribution to another. The same property is easily seen for the binomial distri-
bution, and therefore also for the Poisson distribution.)

6. [22 points] Suppose that a point (X,Y") is picked uniformly in the triangle {(x,y)[0 <
r<1,0<y<zx}

(a) Obtain fxy(u,v), the joint pdf of X and Y, for all u and v.
Solution: The triangle has base one and height one, so it has area of % Hence,
the joint pdf is two inside the triangle and zero outside. That is,

2 0<u<l,0<v<u
0 otherwise

fxy(u,v) = {
(b) Obtain fy|x(v|u), the conditional pdf of ¥ given X, for all u and v.
Solution: The conditional pdf fy|x(v|u) will be constant because the joint pdf

is constant, and for each fixed v € (0,1), 0 < v < u. Hence, fy|x(vju) = <

for v € (0,1) and 0 < v < u. The conditional pdf fy|x(v|u) is not defined for
u ¢ (0,1) because the marginal of X is zero there.
(c) Calculate E[Y|X = u].

Solution: From part (b), given X =u € (0,1), Y is ~ Uniform[0,u]. Thus,

mwxzﬁzg

(d) Compute E[(X —Y)?|X = u.
Solution: From part (b), given X =u € (0,1), Y is ~ Uniform[0,u]. Thus,

By x =) = [ s rtetto = [ ampa =L (a2

7. [18 points] Suppose two different data streams, S; and S, share a communication
channel. S transmits on any given day with probability %, while Sy transmits on the
other days. Let X be the number of bits per hour sent over the channel . If S; transmits,
X is a geometric random variable with parameter p = %, whereas if S transmits, X is
a geometric random variable with parameter p = % You have no way to find out who

is is trasnmitting except by observing the number of bits sent.
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(a) Suppose you use the following rule to decide who is trasnmitting today, based on
observation of the data rate for one hour, X:
o If X >1,say 5
o If X =1, say Sy
What is the probability that this rule makes an error?
Solution: Let m; = P{S; transmits} = 2, and let m = P{S, transmits}

3
1

1—m—5. Let pi (k) be the probability that X = k if S transmits, so p; (k) = %k 2,
Let po(k) be the probability that X = k if Sy transmits, so pa(k) = %’%1% = %k
Then
P{error} = P{error|S; transmits}P{S; transmits} + P{error|S, transmits} P{Ss transmits}
= P{X = 1|5 transmits}m; + P{X > 1|5, transmits}my = p1(1)m + [1 — po(1)]m2
22 11 11
T 337237

(b) The maximum likelihood decision rule for this hypothesis testing problem can be
stated as:
o If X > kj/p, say Sy transmits.
e Otherwise, say S transmits.

for some positive integer value kj;r,. Obtain the value of kj;p,.

Solution: The maximum likelihood decision rule is to say Sy transmits if X takes
on a value k such that:

k

Lok :1<§)k

1k=1 2\ 2
3

The likelihood ratio % (%)k is strictly increasing in k and its values for £ = 1,2 are
39

1 5, respectively, So kyp = 2.
8. [18 points] Suppose that X, Y are jointly Gaussian random variables with pux = uy =
0 and ox = oy = 1. Let their correlation coefficient be p with |p| < 1. Based on
(X,Y), we define the following random variables:

1 1 1 1
W= <2m+2m>“(m+p‘w1—p)y

1 1 1 1
7 = . X+ + Y
(2v1+p 2\/1—p> (2\/1+p Wl—p)
(a) Are W, Z jointly Gaussian? Justify your answer.

Solution: Since X,Y are jointly Gaussian, every linear combination a X + bY is
Gaussian. Every linear combination of W, Z corresponds to a linear combination of
X, Y. Therefore, it will be Gaussian. This implies that W, Z are jointly Gaussian.



(b) Obtain fiz(w, z).
Solution: Clearly, uw = puz = 0. For the variances, we have:

1—p?
(1+p)(1—=p)

and similarly 02 = 1. Finally, by performing the calculations,

oy = Cov(W, W) = =1

Cov(W, Z) =0,

i.e., pwz = 0. Therefore, W, Z are uncorrelated. Since they are jointly Gaussian,
they are independent. This shows that

w2 122 1 w2422
2 7 =

— —_— 2
N o ¢ ’

1
w, z) = fw(w)fz(z) = e
fwz(w,z) = fw(w)fz(2) NG
for w, z € (—o0, +00).
(¢) Obtain the MMSE estimator of Z given W.

Solution: The MMSE estimator of Z given W is the conditional mean E[Z|W].
Since Z, W are independent, we have

E[Z|W] = E[Z] = pz = 0.

(d) Obtain the linear MMSE estimator of X given W.
Solution: We first compute Cov(X, W):

Cov(X, W) = (2\/11+p+w11_p> var(X)+(N11+_p—2 11—,;) Cov(X,Y)
N (2x/11+pjL 2\/11—/)) " (2\/11Tp - 2\/11——P) g
:%<\/l+p+\/1—p>.

We now have:

E[X!W]:uﬂ%i;”/)(vv—um:%(¢1+p+¢1—p)w.

9. [12 points] Let Uy, ..., U, be independent, exponentially distributed random variables
with unknown parameter \.

(a) Identify the ML estimator \ for joint observations Uy, . .., Uy.

Solution: The likelihood is the product of the marginal distributions, because
of the independence. Thus, fr(uy,...,u,) = Ae 21 ... \e™ n = \Pe=2n  where

Sp = Uy + -+ + up. To find Ay, we maximize with respect to A by (optionally

n
Sn "

taking log first) and setting derivative to zero. The result is Ay, =
7



(b) Using the Chebychev inequality, identify a number of observations n large enough

so that [(0.9)XML, (1.1)XM 1] is a confidence interval for estimation of A with con-

fidence level 96%.

Solution: We need n large enough that P{(0.9)Ayr < A < (1.1)Apz} > 0.96.
1.

Equivalently, using S, = U; + ...+ U,, we want P { ©9n < ) < (Si)"} > 0.96,

Sn
or P {0.9 < % < 1.1} > 0.96. To apply the Chebychev inequality we note that
E[*:] = E[AU;] = 1 and Var(222) = i—zVar(Sn) = —AQVEE(UI) = ., where we used
the fact that the variance of the exponential distribution with parameter X is /\—12

Thus, by the Chebychev inequality,
A 1
P{ Sn _ 1’ >0 } e g—

n ~ no?
Setting ;5 = 0.04 with ¢ = 0.1 yields n = G55 = 2500

10. [18 points] Suppose U and V are independent random variables such that U is uni-
formly distributed over [0, 1] and V' is uniformly distributed over [0,2]. Let S = U + V.

(a) Obtain the mean and variance of S.
Solution: E[S] = E[U] + E[V] = 0.5+ 1 = 1.5. Var(S) = Var(U) + Var(V) =
hti =

(b) Derive and carefully sketch the pdf of S.
Solution:

c/2 0<c<1

0= [~ soste-wau={ 3 105

0 else
fU(u) fS(C)
fo(e=u) 1
ﬁv 0.5
j ) .
0 ¢ 1 0 1 2 3

(c¢) Obtain E [U]S], the minimum mean square error linear estimator of U given S.

Solution: Cov(U, S) = Cov(U,U + V) = Var(U) = 5. Thus,

Cov(U, S) 1 1

E[U|S] = E[U] + Var(S) (S—E[S) =5+ (S - 15)

ot

11. [30 points] (3 points per answer)
In order to discourage guessing, 3 points will be deducted for each incorrect answer (no
penalty or gain for blank answers). A net negative score will reduce your total exam
score.



(a) Suppose X and Y are jointly continuous-type random variables with finite variance.

TRUE FALSE
0 0 If the MMSE for estimating Y from X is Var(Y), then
X and Y must be uncorrelated.
0 0 If X and Y are uncorrelated then the MMSE for estimat-

ing Y from X is Var(Y).
Solution: True, False

(b) Suppose Y is a nonnegative random variable with E[Y] = 10, and X is a random
variable with mean 10 and variance 16.

TRUE FALSE
0 0 It is possible that the standard deviation of Y is 10.
O O It is possible that P{Y > 30} = 1/4.
O O It is possible that P{X > 0} = 0.5.

Solution: True, True, False

(¢) Suppose X and Y are two Binomial random variables with parameters nx, px,
and ny, py, respectively.

TRUE FALSE
O O Y =ny — X, then p,(k) = p,(nx — k).
O O If nxy =ny > 20 and p,(1) > p,(1) then E[X] > E[Y].
O O If Z=X+Y, then Z is Binomial(nx + ny,px + py).

Solution: True, True, False

) I . 1 sy n I
(d) Let A, B be nonempty events in a sample space ). Assume that £, Ey E, is
a partition of (2.

TRUE FALSE
O O If A, B are mutually exclusive, then P(A|B) = P(A).
O O Suppose that A # B. Then > | P(E;|A) # >, P(E;|B).

Solution: False, False



