ECE 313: Exam II

Wednesday, November 9, 2016
8:45 p.m. - 10:00 p.m.
A-C will go to room ECEB 1013
D-I will go to room ECEB 1015
J-Z will go to room ECEB 1002

1. [20 points] Let X be a random variable with CDF given by

$$
F_{X}(u)= \begin{cases}C_{1} & u<-3 \\ \frac{2}{6} u+1 & -3 \leq u \leq-1 \\ C_{2} & -1<u<0 \\ \frac{1}{6} u+\frac{4}{6} & 0 \leq u<2 \\ C_{3} & \text { else } .\end{cases}
$$

(a) Obtain the values of the constants C_{1}, C_{2}, and C_{3}.

Solution: By properties of the CDF, $\lim _{u \rightarrow-\infty} F(u)=0$, which implies that $C_{1}=0$, Similarly, $\lim _{u \rightarrow \infty} F(u)=1$, which implies that $C_{3}=1$. Also, $F_{X}(u)$ must be nondecreasing, which along with the values of $F_{X}(-1)=F_{X}(0)=\frac{4}{6}$, implies that $C_{2}=\frac{4}{6}=\frac{2}{3}$.
(b) Obtain $P\{X=1.5\}$.

Solution: There is no discontinuity (jump) at $X=1.5$, hence $P\{X=1.5\}=0$.
(c) Obtain $P\{X>1\}$.

Solution: $P\{X>1\}=1-F_{X}(1)=1-\left(\frac{1}{6}(1)+\frac{4}{6}\right)=\frac{1}{6}$.
(d) Obtain $f_{X}(u)$, the pdf of X, for all u.

Solution: The pdf of X is the derivative of its CDF, hence,

$$
f_{X}(u)=\frac{d}{d u} F_{X}(u)= \begin{cases}\frac{2}{6}=\frac{1}{3} & -3 \leq u \leq-1 \\ \frac{1}{6} & 0 \leq u<2 \\ 0 & \text { else } .\end{cases}
$$

(e) Obtain the median of X. Recall that the median is the value a such that $P\{X \leq a\} \geq 0.5$ and $P\{X \geq a\} \geq 0.5$
Solution: The median can be obtained by setting $F_{X}(u)=0.5$ because the CDF is continuous near its value of 0.5 , which occurs between -3 and -1 . Solving $\frac{2}{6} u+1=\frac{1}{2}$ for u yields $u=-\frac{3}{2}$.
2. [14 points] The random variable X has the $N(-2,16)$ distribution. Express the answers to the following questions in terms of the Φ function.
(a) Obtain $P\left\{X^{2}-2 X \geq 3\right\}$.

Solution: $\quad X^{2}-2 X \geq 3$ when $X \leq-1$ or $X \geq 3$

$$
\begin{aligned}
P\left\{X^{2}-2 X \geq 3\right\} & =P\{X \leq-1\}+P\{X \geq 3\} \\
& =P\left\{\frac{X+2}{4} \leq \frac{1}{4}\right\}+P\left\{\frac{X+2}{4} \geq \frac{5}{4}\right\}=\Phi\left(\frac{1}{4}\right)+1-\Phi\left(\frac{5}{4}\right) .
\end{aligned}
$$

(b) Let $Y=\frac{1}{2} X-2$, obtain $P\{0<Y<2\}$.

Solution: The mean of Y is $E[Y]=E\left[\frac{1}{2} X-2\right]=\frac{1}{2} E[X]-2=\frac{1}{2}(-2)(-2)=-3$, and the variance is $\operatorname{Var}(Y)=\operatorname{Var}\left(\frac{1}{2} X-2\right)=\left(\frac{1}{2}\right)^{2} \operatorname{Var}(X)=\frac{1}{4}(16)=4$, so $\frac{Y+3}{2}$ has standard normal distribution.

$$
P\{0<Y<2\}=P\left\{\frac{3}{2}<\frac{Y+3}{2}<\frac{5}{2}\right\}=\Phi\left(\frac{5}{2}\right)-\Phi\left(\frac{3}{2}\right) .
$$

3. [14 points] Consider a binary hypothesis testing problem where

$$
\begin{aligned}
& H_{0}: \quad f_{0}(y)=\left\{\begin{array}{cc}
C_{1} e^{-y^{2} / 2}, & y \geq 0 \\
0, & y<0
\end{array}\right. \\
& H_{1}: \quad f_{1}(y)=\left\{\begin{array}{cc}
e^{-y}, & y \geq 0 \\
0, & y<0
\end{array}\right.
\end{aligned}
$$

where C_{1} is some non-negative constant. It is known that $\pi_{1}=C_{1} \pi_{0}$.
(a) Determine the MAP decision rule. Draw a picture showing the rule.

Solution: We only need to consider the case $y \geq 0$ because that is the support of both pdfs. For the MAP decision rule, we decide H_{1} when

$$
\Lambda(y)=\frac{f_{1}(y)}{f_{0}(y)} \geq \frac{\pi_{0}}{\pi_{1}}
$$

which in this case yields

$$
\frac{e^{-y}}{C_{1} e^{-y^{2} / 2}}=\frac{1}{C_{1}} e^{-y+y^{2} / 2} \geq \frac{1}{C_{1}} .
$$

By canceling C_{1} and taking natural logarithm on both sides, and multiplying by 2 , the test can be simplified to

$$
y^{2}-2 y \geq 0
$$

Hence, the MAP rule decides H_{1} when $y \geq 2$ and H_{0} when $0 \leq y<2$.
(b) Obtain the probability of false alarm, $p_{\text {false alarm }}$, for the MAP rule. You can express it in terms of the constant C_{1} and the Q function, the complementary CDF of a standard Gaussian.(Hint: Express $f_{0}(y)$ in terms of the density of $\mathcal{N}(0,1)$).
Solution: Note that for $y \geq 0$

$$
f_{0}(y)=\sqrt{\frac{2}{\pi}} e^{-y^{2} / 2}=2 \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}
$$

Hence, for $p_{F A}$, we have:

$$
p_{F A}=P\left(\text { decide } H_{1} \mid H_{0}\right)=P\left(y \geq 2 \mid H_{0}\right)=\int_{2}^{\infty} f_{0}(y) d y=2 \int_{2}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y=2 Q(2)
$$

4. [16 points] The lifetime T of a critical laser in a fiber optic modem is assumed to have a failure rate function $h(t)$, where time is measured in days of operation time.
(a) Find the mean lifetime, $E[T]$, in case $h(t)=\left\{\begin{array}{cl}0 & 0 \leq t \leq 1000 \\ 0.002 & t \geq 1000\end{array}\right.$.

Solution: Since $h(t)=0$ for the first 1000 days, the laser is still working after 1000 days with probability one. After that, the failure rate is constant, so $T-1000$ has the exponential distribution with parameter 0.002 , or mean 500 . Thus, $E[T-1000]=500$, or $E[T]=1500$ days.
(b) Suppose instead $h(t)=\alpha t$ for some $\alpha>0$. What value of α gives $P\{T \geq 500\}=90 \%$? Solution: We have $P\{T \geq 500\}=\exp \left(-\int_{0}^{500} h(s) d s\right)=\exp \left(-\frac{\alpha(500)^{2}}{2}\right)$. So α is determined by $-\frac{\alpha(500)^{2}}{2}=\ln (0.9)$ or $\alpha=\frac{-2 \ln (0.9)}{(500)^{2}}$. (Since $-\ln (1-\epsilon) \approx \epsilon$ for small ϵ, $\left.\alpha \approx \frac{0.2}{(500)^{2}}=0.8 \times 10^{-6}.\right)$
5. [18 points] Suppose X and Y are random variables, each with values in $\{1,2,3\}$, and joint pmf given by:

$$
\begin{array}{c|ccc}
Y=3 & 5 c & 6 c & 7 c \\
Y=2 & 4 c & 5 c & 6 c \\
Y=1 & 3 c & 4 c & 5 c \\
\hline & X=1 & X=2 & X=3
\end{array}
$$

(a) Find the constant c.

Solution: Since the sum of all probabilities is $45 c$, it must be that $c=\frac{1}{45}$.
(b) Find the pmf of X.

Solution: $P\{X=1\}=\frac{3+4+5}{45}=\frac{4}{15}, P\{X=2\}=\frac{4+5+6}{45}=\frac{1}{3}, P\{X=3\}=\frac{5+6+7}{45}=\frac{2}{5}$.
(c) Find $P(X=Y \mid X \leq Y)$.

Solution: $P(X=Y \mid X \leq Y)=\frac{P\{(X=Y) \cap(X \leq Y\})}{P\{X \leq Y\}}=\frac{P\{X=Y\}}{P\{X \leq Y\}}=\frac{3+5+7}{3+4+5+5+6+7}=\frac{15}{30}=\frac{1}{2}$.
6. [18 points] The two parts of this problem are unrelated.
(a) Let $S=X+Y$, where X and Y are independent random variables, X is a Bernoulli random variable with parameter p with $0<p<1$, and Y is a geometric random variable with parameter q with $0<q<1$. Find $P\{S=3\}$.
Solution: From the convolution formula for independent random variables, or equivalently, the law of total probability,
$P\{S=3\}=P\{X=0\} P\{Y=3\}+P\{X=1\} P\{Y=2\}=(1-p) q(1-q)^{2}+p q(1-q)$.
(b) Let X and Y be two continuous-type random variables with joint pdf $f_{X, Y}(u, v)=\frac{1}{2} e^{-u}$ for $u \geq 0$ and $0 \leq v \leq 2$, and 0 otherwise. Let $Z=X+Y$. Find the pdf of Z.
Solution: X and Y are independent so the pdf of Z can be obtained through convolution of the pdfs of X and Y.
For $\alpha \in(0,2), f_{Z}(\alpha)=\int_{0}^{\alpha} \frac{1}{2} e^{u-\alpha} d u=\frac{1}{2}\left(1-e^{-\alpha}\right)$.
For $\alpha \geq 2, f_{Z}(\alpha)=\int_{0}^{2} \frac{1}{2} e^{u-\alpha} d u=\frac{e^{-\alpha}}{2}\left(e^{2}-1\right)$.
Therefore, $f_{Z}(\alpha)= \begin{cases}0 & \alpha \leq 0, \\ \frac{1}{2}\left(1-e^{-\alpha}\right) & \alpha \in(0,2), \\ \frac{e^{-\alpha}}{2}\left(e^{2}-1\right) & \alpha \geq 2 .\end{cases}$

