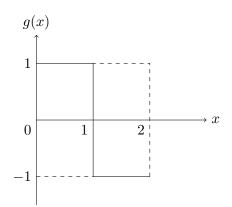
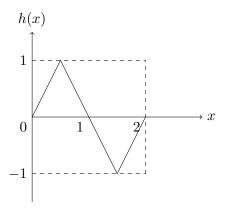
ECE 313: Hour Exam II

Wednesday, November 11, 2015 7:00 p.m. — 8:15 p.m.

1. [20 points] Let X be uniformly distributed over the interval [0,2].





(a) (5 points) Let Y = g(X), where g(x) is the square wave plotted above. Is the distribution of Y of discrete-type or continuous-type? If discrete, find its probability mass function (pmf); if continuous, find its probability density function (pdf).

Solution: Discrete-type, since Y takes two values ± 1 with equal probability. So the pmf is $p_Y(1) = p_Y(-1) = 1/2$.

(b) (7 points) Let Z = h(X), where h(x) is the triangular wave plotted above. Is the distribution of Z of discrete-type or continuous-type? If discrete, find its pmf; if continuous, find its pdf.

Solution: Continuous-type and uniform on [-1,1]. Consider $y \in (0,1)$. Then $P(Y > y) = P(y/2 < X < 1 - y/2) = \frac{1-y}{2}$. So $f_Y(y) = \frac{1}{2}$ for y > 0 and by symmetry also for y < 0. So $f_Y(y) = \frac{1}{2}$ for |y| < 1 and zero otherwise, ie, Y is uniform over (-1,1).

- (c) (4 points) Find the conditional probability $P(Y > 0 \mid Z > 0)$. **Solution:** If Z > 0, then X lies in [0,1] and hence Y = +1 with probability one. So $P(Y > 0 \mid Z > 0) = 1$.
- (d) (4 points) Find a function r so that r(X) is uniformly distributed over [1,5]. Solution: Set r(X) = 2X + 1.
- 2. [22 points] Let N_t be a Poisson process with rate $\lambda > 0$.
 - (a) (4 points) Obtain $P\{N_3 = 5\}$.

Solution: $N_3 \sim Poisson(3\lambda)$, so $P\{N_3 = 5\} = e^{-3\lambda} \frac{(3\lambda)^5}{5!}$.

(b) (6 points) Obtain $P\{N_7 - N_4 = 5\}$ and $E[N_7 - N_4]$.

Solution: $N_7 - N_4 \sim Poisson(3\lambda)$, so $P\{N_7 - N_4 = 5\} = e^{-3\lambda} \frac{(3\lambda)^5}{5!}$, and $E[N_7 - N_4] = 3\lambda$.

(c) (6 points) Obtain $P\{N_7 - N_4 = 5 | N_6 - N_4 = 2\}$.

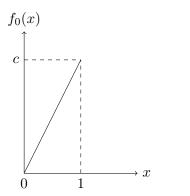
Solution: The increment $N_7 - N_6$ is independent of the increment $N_6 - N_4$, and $N_7 - N_6 \sim Poisson(\lambda)$, hence $P\{N_7 - N_4 = 5 | N_6 - N_4 = 2\} = P\{N_7 - N_6 = 3\} = e^{-\lambda} \frac{(\lambda)^3}{3!}$.

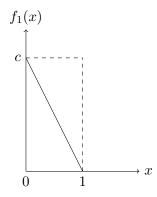
(d) (6 points) Obtain $P\{N_6 - N_4 = 2|N_7 - N_4 = 5\}$. Solution: Using the definition of conditional probability

$$\begin{split} P\{N_6-N_4=2|N_7-N_4=5\} &= \frac{P\{N_6-N_4=2,N_7-N_4=5\}}{P\{N_7-N_4=5\}} = \frac{P\{N_6-N_4=2,N_7-N_6=3\}}{P\{N_7-N_4=5\}} \\ &= \frac{P\{N_6-N_4=2\}P\{N_7-N_6=3\}}{P\{N_7-N_4=5\}} = \frac{\left(e^{-2\lambda\frac{(2\lambda)^2}{2!}}\right)\left(e^{-\lambda\frac{(\lambda)^3}{3!}}\right)}{e^{-3\lambda\frac{(3\lambda)^5}{5!}}} = \binom{5}{2}\left(\frac{2}{3}\right)^2\left(\frac{1}{3}\right)^3, \end{split}$$

because $N_6 - N_4 \sim Poisson(2\lambda)$, $N_7 - N_6 \sim Poisson(\lambda)$, and $N_7 - N_4 \sim Poisson(3\lambda)$. This can also be done by realizing that, conditioned on 5 counts between t=4 and t=7, the arrival time of each one of those counts is uniformly distributed within the interval (4,7). The interval (4,6) is $\frac{2}{3}$ the length of the interval (4,7), hence we obtain $P\{N_6 - N_4 = 2|N_7 - N_4 = 5\} = P\{Binomial(5,\frac{2}{3}) = 2\} = \binom{5}{2}(\frac{2}{3})^2(\frac{1}{3})^3$.

3. [20 points] Let X be a continuous-type random variable taking values in [0,1]. Under hypothesis H_0 , the pdf of X is f_0 ; under hypothesis H_1 , the pdf of X is f_1 . Both pdfs are plotted below. The priors are known to be $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

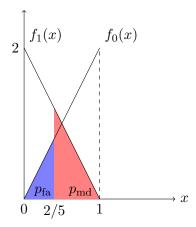




(a) (4 points) Find the value of c.

Solution: c=2 to make sure the area under the density is one.

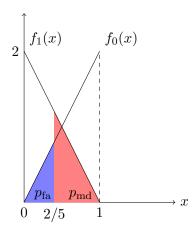
(b) (8 points) Specify the maximum a posteriori (MAP) decision rule for testing H_0 vs. H_1 . Solution:



The MAP rule declares H_1 if $f_1(x) > \frac{\pi_0}{\pi_1} f_0(x)$, i.e., 2-2x > 3x. So declare H_1 if x < 2/5 and H_0 if x > 2/5.

(c) (8 points) Find the error probabilities $p_{\text{false alarm}}$, $p_{\text{miss detection}}$ and the average probability of error p_e for the MAP rule.

Solution:



The MAP rule declares H_1 if $f_1(x) > \frac{\pi_0}{\pi_1} f_0(x)$, i.e., 2 - 2x > 3x. So declare H_1 if x < 2/5 and H_0 if x > 2/5. $p_{\text{false alarm}} = 4/25 = 0.16$, $p_{\text{miss detection}} = 9/25 = 0.36$, $p_e = \pi_0 p_{\text{false alarm}} + \pi_1 p_{\text{miss detection}} = 6/25 = 0.24$.

4. [20 points] Let the joint pdf for the pair (X, Y) be

$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, 0 \le y \le 1, x+y \le 1\\ 0, & \text{otherwise,} \end{cases}$$

for some constant c.

(a) (5 points) Compute the marginal $f_X(x)$. You can leave it in terms of c.

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \begin{cases} \int_0^{1-x} cxy dy = \frac{c}{2}x(1-x)^2, & 0 \le x \le 1\\ 0, & \text{elsewhere} \end{cases}$$

(b) (6 points) Obtain the value of the constant c for $f_{X,Y}$ to be a valid joint pdf. **Solution:** Need $f_{X,Y}(x,y) \geq 0$ for all pairs (x,y), and

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx dy = \int_{0}^{1} \left\{ \int_{0}^{1-x} cxy dy \right\} dx = \int_{0}^{1} cx \left[\frac{y^{2}}{2} \right]_{0}^{1-x} dx = \int_{0}^{1} \frac{c}{2} x (1-x)^{2} dx = \int_{0}^{1} \frac{c}{2} (x-1+1)(x-1)^{2} dx = \int_{0}^{1} \frac{c}{2} (x-1)^{3} dx + \int_{0}^{1} \frac{c}{2} (x-1)^{2} dx = \frac{c}{2} \left[\frac{(x-1)^{4}}{4} \right]_{0}^{1} + \frac{c}{2} \left[\frac{(x-1)^{3}}{3} \right]_{0}^{1} = \frac{c}{2} \left(-\frac{1}{4} + \frac{1}{3} \right) = \frac{c}{24},$$

hence c = 24.

(c) (5 points) Obtain $P\left\{X+Y<\frac{1}{2}\right\}$. Solution:

$$P\left\{X+Y<\frac{1}{2}\right\} = \int_0^{1/2} \int_0^{1/2-x} 24xy dx dy = \frac{1}{16} = 0.0625.$$

- (d) (4 points) Are X and Y independent? Explain why or why not. **Solution:** The support of $f_{X,Y}$ is not a product set, hence they are not independent.
- 5. [18 points] Suppose we are testing if a transistor in a circuit is working properly or not. The voltage we observe at the output is a normal random variable X. If the transistor is working, X is distributed according to N(1,1). If the transistor is not working, then X is distributed according to N(-1,1). There is an 50% chance that the transistor is working. You can express the answers for this problem in terms of Φ and Q.
 - (a) (6 points) Find $P\{X \le 1 | \text{transistor is working}\}$. Solution: Let W be the event $\{\text{transistor is working}\}$. When the transistor is working, X follows a normal distribution with mean 1 and variance 1. Therefore,

$$P\{X \le 1|W\} = \Phi\left(\frac{1-1}{1}\right) = \Phi(0) = 0.5.$$

(b) (6 points) Find $P\{X \ge 1\}$. **Solution:** Then, using total probability and $P(W) = P(W^c) = \frac{1}{2}$,

$$\begin{split} P\{X \geq 1\} &= P\{X \geq 1 | W\} P(W) + P\{X \geq 1 | W^c\} P(W^c) \\ &= Q\left(\frac{1-1}{1}\right)\frac{1}{2} + Q\left(\frac{1-(-1)}{1}\right)\frac{1}{2} = \frac{1}{2}\frac{1}{2} + Q(2)\frac{1}{2} = \frac{1}{4} + \frac{1}{2}Q(2) \end{split}$$

(c) (6 points) Obtain the unconditional pdf of X, $f_X(u)$ for all u. **Solution:** We first calculate the CDF of X for $-\infty < c < \infty$,

$$F_X(c) = P(X \le c) = P\{X \le c | W\} P(W) + P\{X \le c | W^c\} P(W^c)$$
$$= \Phi\left(\frac{c-1}{1}\right) \frac{1}{2} + \Phi\left(\frac{c-(-1)}{1}\right) \frac{1}{2} = \Phi\left(c-1\right) \frac{1}{2} + \Phi\left(c+1\right) \frac{1}{2}$$

Taking the derivative on both sides, we get that

$$f_X(c) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{(c-1)^2}{2}} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{(c+1)^2}{2}},$$

for $-\infty < u < \infty$.