ECE 313: Problem Set 12

Functions of Random Variables, Covariance and Correlation

Due:Wednesday, December 4 at 6 p.m.Reading:313 Course Notes Sections 4.1-4.9Reminder:The Final Exam is on Monday, December 16, 8:00 a.m. - 11:00 a.m.Location:Sections D (meets 11 am) and E (meets 1 pm) 100 MSEBSections X (meets 9am) and C (meets 10am) 151 ELTwo two-sided 8.5"×11" sheet of notes are allowed, with font size no smaller than 10 pt or equivalent handwriting. Bring your student ID.

1. [Circularly symmetric joint pdf]

Problem 4.15 of the Course Notes

2. [Randomly routing to two different servers]

A web site has two servers. When a request comes in, the router mentally flips a coin and routes the request to Server I if the result is Heads and to Server II if the result is Tails. Each coin flip is independent of all others and results in Head with probability $p,\ 0 . Let <math>\mathbb N$ denote the number of requests that arrive in one minute. We assume that $\mathbb N$ is a Poisson random variable with parameter λ . Let X the number of requests routed to Server I during this minute. Thus, conditioned on $\mathbb N=n,\ n>0$, $\mathbb X$ is a binomial random variable with parameters (n,p). Let $\mathbb Y$ denote the number of requests routed to Server II. Then, given that $\mathbb N=n,\ Y$ is a binomial random variable with parameters (n,1-p). In fact, given that $\mathbb N=n,\ \mathbb Y=n-\mathbb X$ and $\mathbb X$ are very much (conditionally) dependent random variables.

- (a) For $0 \le k \le n$, the conditional pmf of \mathbb{X} given $\mathbb{N} = n$ is $p_{\mathbb{X}|N}(k \mid \mathbb{N} = n) = \binom{n}{k} p^k (1-p)^{n-k}$. What is the joint pmf $p_{\mathbb{X},\mathbb{N}}(k,n)$? Be sure to specify the value of $p_{\mathbb{X},\mathbb{N}}(k,n)$ for all $k,n \ge 0$, and explain why for any given $k, p_{\mathbb{X},\mathbb{N}}(k,n)$ is nonzero only for $n \ge k$.
- (b) What is the marginal pmf $p_{\mathbb{X}}(k)$? Be sure to specify the value of the marginal pmf for all $k \geq 0$.
- (c) Given that Server I received $\mathbb{X} = k$ requests, what is the *conditional* pmf $p_{\mathbb{N}|\mathbb{X}}(n \mid \mathbb{X} = k)$ of \mathbb{N} ?
- (d) We have noted that \mathbb{X} and \mathbb{Y} are conditionally dependent random variables given that $\mathbb{N} = n$. Prove that \mathbb{X} and \mathbb{Y} are unconditionally independent random variables. That is, show that for all $i, j \geq 0$, $p_{\mathbb{X},\mathbb{Y}}(i,j) = p_{\mathbb{X}}(i)p_{\mathbb{Y}}(j)$.

3. [Drill on covariance and correlation]

Let $\mathsf{E}[\mathbb{X}] = 1$, $\mathsf{E}[\mathbb{Y}] = 4$, $\mathsf{var}(\mathbb{X}) = 4$, $\mathsf{var}(\mathbb{Y}) = 9$, and $\rho_{\mathbb{X},\mathbb{Y}} = 0.1$.

- (a) If $\mathbb{Z} = 2(\mathbb{X} + \mathbb{Y})(\mathbb{X} \mathbb{Y})$, what is $\mathsf{E}[\mathbb{Z}]$?
- (b) If $\mathbb{T} = 2\mathbb{X} + \mathbb{Y}$ and $\mathbb{U} = 2\mathbb{X} \mathbb{Y}$, what is $cov(\mathbb{T}, \mathbb{U})$?
- (c) Find the mean and variance of W = 3X + Y + 2.

4. [More drill on covariance and correlation]

This problem has three independent parts. Do not apply the numbers from one part to the others.

- (a) If $\operatorname{\mathsf{var}}(\mathbb{X} + \mathbb{Y}) = 36$ and $\operatorname{\mathsf{var}}(\mathbb{X} \mathbb{Y}) = 64$, what is $\operatorname{\mathsf{cov}}(\mathbb{X}, \mathbb{Y})$? If you are also told that $\operatorname{\mathsf{var}}(\mathbb{X}) = 3 \cdot \operatorname{\mathsf{var}}(\mathbb{Y})$, what is $\rho_{\mathbb{X},\mathbb{Y}}$?
- (b) If var(X + Y) = var(X Y), are X and Y uncorrelated?
- (c) If var(X) = var(Y), are X and Y uncorrelated?

5. [Conditional densities and means]

The joint pdf of random variables X and Y is given

$$f_{\mathbb{X},\mathbb{Y}}(u,v) = \begin{cases} \frac{e^{-u/v}e^{-v}}{v}, & 0 < u < \infty, 0 < v < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Are X and Y independent random variables?
- (b) Find $f_{\mathbb{X}|\mathbb{Y}}(u \mid \mathbb{Y} = v)$, the conditional density of \mathbb{X} given that $\mathbb{Y} = v$.
- (c) What is the conditional mean $E[X \mid Y = v]$ of X given that Y = v?
- (d) Since the value of the conditional mean of $\mathbb X$ given the value of $\mathbb Y$ depends on the value of $\mathbb Y$, that is, it is a *function* of $\mathbb Y$, the conditional mean of $\mathbb X$ can also be regarded as a random variable; in fact a function of the random variable $\mathbb Y$. It is conventional to denote this random variable by $\mathsf E[\mathbb X\mid\mathbb Y]$ with the meaning that if $\mathbb Y$ happens to have value α , then this *function* of $\mathbb Y$ has value $\mathsf E[\mathbb X\mid\mathbb Y]=\alpha]$. Use your answer of part (c) to express $\mathsf E[\mathbb X\mid\mathbb Y]$ as a function of $\mathbb Y$ without using the $\mathsf E$ operator.
- (e) The law of iterated expectation (with the unfortunate acronym LIE) claims that the expected value of $E[X \mid Y]$ equals E[X], that is,

$$\mathsf{E}\Big[\mathsf{E}[\mathbb{X}\mid\mathbb{Y}]\Big]=\mathsf{E}[\mathbb{X}].$$

Note very carefully: the right side is $\mathsf{E}[\mathbb{X}];$ **NOT** $\mathsf{E}[\mathbb{Y}]$ even though $\mathsf{E}[\mathbb{X} \mid \mathbb{Y}]$ is a function of \mathbb{Y} , not of \mathbb{X} .. In this particular case, of course, since $\mathsf{E}[\mathbb{X} \mid \mathbb{Y}]$ happens to $\mathit{equal}\ \mathbb{Y}$, the LIE tells us that $\mathsf{E}\Big[\mathsf{E}[\mathbb{X} \mid \mathbb{Y}]\Big] = \mathsf{E}[\mathbb{X}]$ has the same value as $\mathsf{E}[\mathbb{Y}].$

So, what is E[Y]? And what is the value of E[X]?

- (f) Calculate E[X] directly from the joint pdf of X and Y. Do you get the same answer as in part (f)?
- (g) There is no part (g).