ECE 313: Problem Set 8

Gaussian Random Variables, ML Parameter Estimation, Function of a Random Variable

Due: Wednesday, October 30 at 6 p.m. Reading: 313 Course Notes Sections 3.6-3.8

1. [A puzzle about the Gaussian distribution]

Suppose that $\mathbb{X} \sim \mathsf{N}(\mu.\sigma^2)$ and that $P\{X > 20.6\} = P\{X \le -18.6\} = 0.025$. What are the values of the mean μ and standard deviation σ ?

2. [Working with a table of the unit Gaussian distribution function]

The width of a metal trace on a circuit board is modelled as a Gaussian random variable with mean $\mu = 0.9$ microns and standard deviation $\sigma = 0.003$ microns.

- (a) Traces that fail to meet the requirement that the width be in the range 0.9 ± 0.005 microns are said to be defective. What percentage of traces are defective?
- (b) A new manufacturing process that produces smaller variations in trace widths is to be designed so as to have no more than 1 defective trace in 100. What is the maximum value of σ for the new process if the new process achieves the goal?

3. [DeMoivre-Laplace approximation to central term of binomial distribution]

Let n be a positive even integer, and let \mathbb{X} be a binomial random variable with parameters (n, 0.5). This problem focuses on $P\{\mathbb{X} = \frac{n}{2}\}$. The continuity correction for approximating the binomial distribution by the normal distribution begins by writing this same probability as $P\{\frac{n-1}{2} \leq \mathbb{X} \leq \frac{n+1}{2}\}$.

- (a) Using the continuity correction, find the normal approximation to $P\{\mathbb{X} = \frac{n}{2}\}$. Your answer should involve n and the standard normal CDF $\Phi(x)$.
- (b) Find the constant c such that $\sqrt{n}P\{\mathbb{X}=\frac{n}{2}\}\to c$ as $n\to\infty$, assuming you can replace $P\{\mathbb{X}=\frac{n}{2}\}$ by its normal approximation found in part (a). This suggests that $P\{\mathbb{X}=\frac{n}{2}\}\approx\frac{c}{\sqrt{n}}$ for large n. (Hint: Since $\Phi(x)$ is differentiable for all x, then $\frac{\Phi(h)-\Phi(0)}{h}\to\frac{d}{dx}\Phi(x)\big|_{x=0}=\Phi'(0)$ as $h\to0$.)
- (c) For n = 30, compute the exact value of $P\{\mathbb{X} = \frac{n}{2}\}$, the approximation found in part (a), and the approximation found in part (b).

4. [ML estimation of a parameter of a uniform density]

Problem 3.22, p. 151, of the Course Notes

5. [Current through a semiconductor diode]

The current I through a semiconductor diode is related to the voltage V across the diode as $I = I_0(\exp(V) - 1)$ where I_0 is the magnitude of the reverse current. Suppose that the voltage across the diode is modeled as a continuous random variable \mathbb{V} with pdf

$$f_{\mathbb{V}}(u) = 0.5 \exp(-|u|), \quad -\infty < u < \infty.$$

So, the current $\mathbb{I} = I_0(\exp(\mathbb{V}) - 1)$ is also a continuous random variable.

- (a) What values can I take on?
- (b) Find the CDF of I.
- (c) Find the pdf of I.

6. [An A/D converter]

This is a variation of Problem 3.26 of the Course Notes.

A signal $\mathbb X$ is modeled as a unit Gaussian random variable. For some applications, however, only the quantized value $\mathbb Y$ (where $\mathbb Y=\alpha$ if $\mathbb X>0$ and $\mathbb Y=-\alpha$ if $\mathbb X\leq 0$) is used. Note that $\mathbb Y$ is a discrete random variable.

- (a) What is the pmf of \mathbb{Y} ?
- (b) The squared error in representing \mathbb{X} by \mathbb{Y} is $\mathbb{Z} = \left\{ \begin{array}{l} (\mathbb{X} \alpha)^2, & \text{if } \mathbb{X} > 0, \\ (\mathbb{X} + \alpha)^2, & \text{if } \mathbb{X} \leq 0, \end{array} \right.$ and varies as different trials of the experiment produce different values of \mathbb{X} . We would like to choose the value of α so as to minimize the mean squared error $\mathsf{E}[\mathbb{Z}]$. Use LOTUS to easily calculate $\mathsf{E}[\mathbb{Z}]$ (the answer will be a function of α), and then find the value of α that minimizes $\mathsf{E}[\mathbb{Z}]$.

 Hint: Before you start evaluating the integrals that LOTUS gives you for $\mathsf{E}[\mathbb{Z}]$, write down the integral that you would use to compute the variance of X. Also, compute $\frac{d}{dn}e^{-u^2/2}$, and have
- (c) We now get more ambitious and use a 3-bit A/D converter which first quantizes \mathbb{X} to the nearest integer \mathbb{W} in the range -3 to +3. Thus, $\mathbb{W}=3$ if $\mathbb{X}\geq 2.5$, $\mathbb{W}=2$ if $1.5\leq \mathbb{X}<2.5$, $\mathbb{W}=1$ if $0.5\leq \mathbb{X}<1.5$, \cdots , $\mathbb{W}=-3$ if $\mathbb{X}<-2.5$. Note that \mathbb{W} is also a discrete random variable. Find the pmf of \mathbb{W} .

these things in front of you. It will make finding $E[\mathbb{Z}]$ EZ, or EZier.

(d) The output of the A/D converter is a 3-bit 2's complement representation of \mathbb{W} . Suppose that the output is $(\mathbb{Z}_2, \mathbb{Z}_1, \mathbb{Z}_0)$. What is the pmf of \mathbb{Z}_2 ? the pmf of \mathbb{Z}_1 ? the pmf of \mathbb{Z}_0 ? Note that (1,0,0) which represents -4 is not one of the possible outputs from this A/D converter.