Mini Project 1:

Failure Data Analysis for Software-as-a-Service (SaaS) Business Application

ECE 313

Prof. Ravi K. Iyer

TA: Homa Alemzadeh

First yet Realistic Empirical Analysis

- You are an analyst working at the company ACME
- Your duties consist in quantifying how much a specific system deployed by ACME is reliable
 - i.e., if it fails, how frequent it fails and how it fails
- You use data extracted from computer logs collected at runtime by the system under analysis
 - Considered computer logs contain information whether a given operation performed by the considered system succeeded or failed at time T
 - The logs are collected in the text format
 - Example (from your computers): event logs (windows), syslogs (linux), Osx Logs (Mac Osx)

Description of the Datasets

- Failure data from a production cloud computing Datacenter
- The computer processes files uploaded by the user
- The processing steps in several computing stages and it can fail according to two failure types "USER DATA FAILURE", "PLATFORM FAILURE"
- The data is structured in the following fields:

Submission Time	Computing Stage in the Failure	Computation Start Time	Computation End Time	Failure Cause	Failure Details	Failure Type
7/1/12 0:02	IT1	7/1/12 0:02	7/1/12 0:02	File Not Received	Went over cut-off time	USER DATA FAILURE
7/1/12 0:58	IT4_L2	7/1/12 0:59	7/1/12 0:59	System Error	Package Validation/Execution Failed.	PLATFORM_FAILURE
7/1/12 0:59	IT4_L2	7/1/12 0:59	7/1/12 0:59	System Error	Package Validation/Execution Failed.	PLATFORM_FAILURE
7/1/12 1:01	IT4_L2	7/1/12 1:01	7/1/12 1:02	System Error	Package Validation/Execution Failed.	PLATFORM_FAILURE
7/1/12 1:01	IT4_L2	7/1/12 1:01	7/1/12 1:01	System Error	Package Validation/Execution Failed.	PLATFORM_FAILURE

Get familiar with the analysis environment

- 1. Download and Install R:
 - http://www.r-project.org
- 2. Explore the R software environment and its basic commands by reading the provided tutorials on the class website
- 3. Import the dataset assigned to your group in R
 - Hint: Text files are in standard Unix format (UTF-8)
- 4. Split the data into two different datasets
 - Hint: in the provided datasets, entries with a field "USER DATA FAILURE" or "PLATFORM_FAILURE", belong to two different type of events

What are the system failure modes/types?

- 1. What is the probability that a file submission fails?
 - Hint: Check out the <u>System and Data Description</u> document to find out the sample space.
- 2. Calculate the probability that there is one of the following possible failure types
 - User Data Failure, Platform Failure
 - Hint: Calculate the probabilities by relative frequency.
- 3. For each failure type, calculate the probability that the failure is due to each specific **failure cause** (present in the data).
 - E.g., what is the probability of a platform failure due to "File not found", "Timeout error", or etc?

What are the system failure modes/types?

- 4. Find the probability of each failure type by adding the partial failure probabilities in 3.
 - Hint: If x% of the failures are platform failures, of which 92% of them are due to the "timeout error", 8% "file not found", then failures due to "timeout errors" account for 92% * x% of the total failures in the whole space of events
 - How else would you arrive to this value?

Failure rate: How often does the system fail?

- 1. Compute the failure rate on daily basis (failures per day) for:
 - 1. All failure events taken together
 - 2. For each of the failure types in Task 1.2
- Visualization of the results
 - A. Draw the scatter plot of the data points against time
 - Hint: X axis is time, Y axis is the computed failure rate values
 - B. Draw a histogram for the computed failure rates.
 - All the charts should be appropriately formatted by showing the legend, axis title, and chart title.
 - Hint: R provides a great online HELP. Try invoking: help(NAME_OF_THE_COMMAND) from the R shell
 - Provide a short and intuitive description of the results
 - Hint: A few bullets on the two/three most important things you notice

Calculate the time between two consecutive failures

- For each failure type in Task 1
 - Add a column to the dataset computing the time between two consecutive failure entries
 - Plot the results
 - Plot the the average time between two consecutive failures per week for the whole period
 - Provide a short and intuitive description of the results (2-3 bullets)
 - Bonus: compute the probability that two consecutive failures (of the same type) happen within 1 minute, 5 minute, 10 minute, 15 minutes....until 30 minutes from each other and plot the results
 - Question: How would you explain the results intuitively?
 - Explain in 3 bullets

Project Timeline and grading

- Checkout the class website for description of system, tasks, and data sets: http://courses.engr.illinois.edu/ece313/SectionB/projects.html
- Your group members and data sets are assigned to you in the class and by Email.
- A report (including both the R code and results) must be delivered electronically to the TA: Email to ece313.B@gmail.com.
 - Explain all your work and include the code with comments
 - Non-readable reports will be returned without a grade.
 - Write your names, group name, and the data-set assigned to you on the report.
- Post your questions to <u>ECE 313 web-board on the my.ece website</u>.
- Task 0-1: due on Tuesday, September 3, 11:59 PM.
- Task 2-3: due on Friday, September 6, 11:59 PM.
- Grading

- Task 0 - 1.1: 25%

- Task 1.2 - 1.3: 30%

- Task 2.1 - 2.2: 20%

- Task 3: 25%

Bonus: 5%