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Mini Project 2: Monitoring Flow 

•  Multi-parameter Signal Analysis for Patient Monitoring 
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Mini Project 2: Summary 

•  The monitoring process starts with collecting multi-parameter 
inter-correlated physiological signals (such as Blood Pressure, 
Heart Rate, and Electrocardiogram) from biomedical sensors.  

•  Then it steps through an initial training phase, in which a 
physiological signature of the patient (Health Index), is compiled 
by aggregating (constructing a vector of) different statistical 
features (such as mean and standard deviation) from the input 
signals.  

•  During the monitoring phase, the obtained signature is used as 
a reference point (patient-specific threshold) for detecting 
abnormalities in each signal. At the end, a fusion technique 
(here a majority voter) is employed to reach at a final diagnostic 
decision.  

H. Alemzadeh, C. D. Martino, Z. Jin, Z. Kalbarczyk, R. K. Iyer, “Towards Resiliency in Embedded Medical Monitoring Devices,” 
Proceedings of DSN Workshop on Open Resilient Human-aware Cyber-physical Systems (WORCS-2012), Boston, MA, July 2012."
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Mini Project 2: Majority Voter 
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Today’s Topics 

•  Memoryless Property of Exponential Distribution 
•  Exponential Distribution Examples 

•  Uniform Distribution 

•  Expectation of Random Variables 
–  Discrete case 
–  Continuous case 
–  Examples 
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Memoryless Property of the 
Exponential Distribution 

•  Assume that we know that X exceeds t (X > t).  For example, X is the lifetime of 
a component. 

•  Assume we have observed the component to have been operating for t hours. 
•  We are then interested in the distribution of Y = X- t, which is the remaining 

(residual) lifetime of the component. 
•  The conditional probability of Y ≤ y can be denoted by Gt(y). 
•  Thus for y ≥ 0: 

Gt (y) = P(Y ≤ y | X > t)
= P(X − t ≤ y | X > t)
= P(X ≤ y+ t | X > t)

=
P(X ≤ y+ t  and X > t)

P(X > t)
by the definition of conditional probability

=
P(t < X ≤ y+ t)

P(X > t)
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Memoryless Property (cont.) 

•  Thus: 
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Memoryless Property (cont.) 

•  Thus, Gt(y) is independent of t and identical to the original 
exponential distribution of X. 

•  The distribution of the remaining life of the component does not 
depend on how long the component has been operating; the 
component does not “age.”  Its eventual breakdown results 
from a suddenly appearing failure, not from gradual 
deterioration. 

•  If inter-arrival times are exponentially distributed, the “memory-
less” property (also known as the Markov property) says that 
“the wait time for a new arrival is statistically independent of how 
long we have already waited”! 
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Memoryless Property of the 
Exponential Distribution 

F(
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Conditional probability density function of "
               Y = X - t given X > t"
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Memoryless Property (cont.) 

•  If X is a nonnegative continuous random variable with the 
Markov property, then we can show that the distribution of X 
must be exponential: 

•  Since Fx(0) = 0, we rearrange the above equation to get: 
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Memoryless Property (cont.) 

•  Taking the limit as t approaches zero, we get: 

 where F’x denotes the derivative of Fx.  Let Rx(y) = 1 - Fx(y); 
then the above equation reduces to:  

 

•  The solution to this differential equation is given by: 

  
 

 where K is a constant of integration and -R’x (0) = F’x(0) = fx(0), 
the pdf evaluated at 0. 

! F X (y) = ! F X (0)[1− FX (y)]

! R X (y) = ! R X (0)RX (y)

RX (y) = Ke ! R X (0)y
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Memoryless Property (cont.) 

•  Noting that the Rx(0) = 1, and denoting fx(0) by the constant λ, 
we get:  

 and hence 
 

•  Therefore X must have the exponential distribution. 
•  The exponential distribution can be obtained from the Poisson 

distribution by considering the interarrival times rather than the 
number of arrivals. 

Rx (y) = e−λy

Fx (y) = 1− e−λy ,        y > 0.
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Uniform Distribution 
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The Uniform or Rectangular 
Distribution 

•  A continuous random variable X is said to have a uniform 
distribution over the interval (a,b) if its density is given by: 

•  And the distribution function is given by: 
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Expectation of a Random Variable 
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Expectation of a Random Variable 

•  The Discrete Case: If X is a discrete random variable having a 
probability mass function p(x), then the expected value of X is 
defined by 

 
 
The expected value of X is a weighted average of the possible values 
that X can take on, each value being weighted by the probability that X 
assumes that value. For example, if the probability mass function of X 
is given by 
 
then 
 
 
is just an ordinary average of the two possible values 1 and 2 that X 
can assume. 
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Expectation of a Random Variable (Cont.) 

Assume 
 
 
 
Then 
 
is a weighted average of the two possible values 1 and 2 where the 
value 2 is given twice as much weight as the value 1 since p(2) = 
2p(1). 

–  Find E[X] where X is the outcome when we roll a fair die. 
–  Solution: Since  
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Expectation of a Random Variable (Cont.) 

•  Expectation of a Bernoulli Random Variable: Calculate E[X] 
when X is a Bernoulli random variable with parameter p. 

•  Since: 
•  We have: 

 
Thus, the expected number of successes in a single trial is just the 
probability that the trial will be a success. 
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Expectation of a Random Variable (Cont.) 

•  Expectation of a Binomial Random Variable: Calculate E[X] 
when X is a binomially distributed with parameters n and p. 
   

 
 
 
 
 
 
 
 

     follows by letting k = i − 1. Thus, 
the expected number of successes in  

n independent trials is n multiplied by the 
probability that a trial results in a success. 
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Expectation of a Random Variable (Cont.) 

•  Expectation of a Geometric Random Variable: Calculate the 
expectation of a geometric random variable having parameter p. 

•  We have:    

 
 
 
 
 
 
 
 

The expected number of independent trials  
we need to perform until we get our first success  
equals the reciprocal of the probability that any one 
trial results in a success. 
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Expectation of a Random Variable (Cont.) 

•  Expectation of a Poisson Random Variable: Calculate E[X] if X is 
a Poisson random variable with parameter λ. 
 
 
 
 
 
 
 
 

 
 
     where we have used the identity: 
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The Continuous Case 
•  The expected value of a continuous random variable: If X is a 

continuous random variable having a density function f (x), then the 
expected value of X is defined by: 

 
 
 
•  Example: Expectation of a Uniform Random Variable, 

Calculate the expectation of a random variable uniformly 
distributed over (α, β) 

 

 
 
 
The expected value of a random variable  
Uniformly  distributed over the interval (α, β)  
is just the midpoint of the interval. 
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The Continuous Case (Cont.) 
•  Expectation of an Exponential Random Variable: Let X be exponentially 

distributed with parameter λ. Calculate E[X]. 
 
 

•  Integrating by parts                  yields:  
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The Continuous Case Cont’d 
•  Expectation of a Normal Random Variable):  X is normally distributed with 

parameters µ and σ2: 
 

•  Writing x as (x-µ) + µ yields  
 
 
 

•  Letting y= x-µ leads to 
 
 

•  Where f(x) is the normal density.  By symmetry, the first integral must be 0, and 
so 
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Example 1 
•  Consider the problem of searching for a specific name in a table of names. A simple 

method is to scan the table sequentially, starting from one end, until we either find 
the name or reach the other end, indicating that the required name is missing from 
the table.  The following is a C program fragment for sequential search: 
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Example 1 Cont’d 
•  In order to analyze the time required for sequential search, let X be the 

discrete random variable denoting the number of comparisons 
“myName≠Table[I]” made. Clearly, the set of all possible values of X is {1,2,
…,n+1}, and X=n+1 for unsuccessful searches.  Since the value of X is fixed 
for unsuccessful searches, it is more interesting to consider a random 
variable Y that denotes the number of comparisons for a successful search.   
The set of all possible values of Y is {1,2,…,n}. To compute the average 
search time for a successful search, we must specify the pmf of Y.  In the 
absence of any specific information, let us assume that Y is uniform over its 
range: 

 

•  Then 

•  Thus, on the average, approximately half the table needs to be searched 
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Example 2 
•  If αi denotes the access probability for name Table[i], then the average 

successful search time is E[Y] is minimized when names in the table are in 
the order of nonincreasing access probabilities; that is, α1 ≥ α2 ≥ … ≥ αn.  

 

•  Where the constant c is determined from the normalization requirement  

•  Thus,  

•  Where Hn is the partial sum of a harmonic series; that is:                          and 
C(=0.577) is the Euler Constant. 

•  Now, if the names in the table are ordered as above, then the average 
search time is 

•  Which is considerably less than the previous value (n+1)/2, for large n 
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Example 3 
•  Zipf’s law has been used to model the distribution of Web page requests 

[BRES 1999]. It has been found that           the probability of a request for 
the ith most popular page is inversely proportional to i [ALME1996, WILL 
1996], 

•  Where n is the total number of Web pages in the universe. 
 
•  We assume the Web page requests are independent and the cache can 

hold only m Web pages regardless of the size of each Web page. If we 
adopt a removal policy called “least frequently used”, which always keeps 
the m most popular pages, then the hit ratio h(m)- the probability that a 
request can find its page in cache- is given by 
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Example 4 
•  Let X be a continuous random variable with an exponential density given by 

•  Then 
 
•  Let u=λx, then du= λdx, and 

•  Thus, if a component obeys an exponential failure law with parameter λ 
(known as the failure rate), then its expected life, or its mean time to failure 
(MTTF), is 1/ λ.  Finally, if the service time requirement of a job is an 
exponentially distributed random variable with parameter µ (known as the 
service rate), then the mean (average) service time is 1/µ. 
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Problem 1 
•  Using integration by parts, show (assuming that                                     and  
                          are all finite) that for a continuous random variable X: 

 
•  This result states that the expectation of a random variable X  equals the 

difference of the areas of the right-hand and left-hand shaded regions in 
Figure 4.P.1.(This formula applies to the case of discrete and mixed random 
variables as well.) 
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Moments 
•  Let X be a random variable, and define another random variable Y as a 

function of X so that                     Suppose that we wish to compute E[Y] 
 
 
 
 
(provided the sum or the integral on the right-hand side is absolutely 
convergent). A special case of interest is the power function 
For k=1,2,3,…,              is known as the kth moment of the random variable 
X.  Note that the first moment          is the ordinary expectation or the mean 
of X. 

•  We define the kth central moment,      of the random variable X by 
 

•  Known as the variance of X, Var[X], often denoted by  
•  Definition (Variance). The variance of a random variable X is 

 
 
 
It is clear that Var[X] is always a nonnegative number. 
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Variance: 2nd Central Moment 
•  We define the kth central moment,      of the random variable X by 

 

•       known as the variance of X, Var[X], often denoted by  

•  Definition (Variance). The variance of a random variable X is 
 
 
 
 

•  It is clear that Var[X] is always a nonnegative number. 
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